Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon monoxide coordinated, oxidation

Matrix isolation methods of synthesis have also been used to prepare and study coordination compounds. These involve the vaporization of a metal and a potential ligand, which are then rapidly carried in a stream of inert gas to a very cold surface, where the compound which has been formed is quickly trapped in the solid matrix. It is possible to determine the type of bonding, the structure and the thermodynamic properties of the compounds formed. Only small ligand molecules have been used thus far carbon monoxide, nitric oxide, nitrogen and oxygen, for example, but molecules of great interest have been formed. Some such are [Pd(C2H4)], [Pd(N2)3], [Ni(N2)202], [Ni(N2)4] and [Ni(CO)(N2)3].41... [Pg.28]

One of the relatively few simple odd electron species, nitric oxide is an intriguing heteronuclear diatomic and the parent member of the oxides of nitrogen. Like carbon monoxide, nitric oxide has a long and distinguished coordination chemistry, but unlike CO, it forms very few binary metal... [Pg.144]

The mechanism of the catalytic cycle is outlined in Scheme 1.37 [11]. It involves the formation of a reactive 16-electron tricarbonyliron species by coordination of allyl alcohol to pentacarbonyliron and sequential loss of two carbon monoxide ligands. Oxidative addition to a Jt-allyl hydride complex with iron in the oxidation state +2, followed by reductive elimination, affords an alkene-tricarbonyliron complex. As a result of the [1, 3]-hydride shift the allyl alcohol has been converted to an enol, which is released and the catalytically active tricarbonyliron species is regenerated. This example demonstrates that oxidation and reduction steps can be merged to a one-pot procedure by transferring them into oxidative addition and reductive elimination using the transition metal as a reversible switch. Recently, this reaction has been integrated into a tandem isomerization-aldolization reaction which was applied to the synthesis of indanones and indenones [81] and for the transformation of vinylic furanoses into cydopentenones [82]. [Pg.22]

A proton (H+) is an electron pair acceptor. It is therefore a Lewis acid because it can attach to ( accept") a lone pair of electrons on a Lewis base. In other words, a Bronsted acid is a supplier of one particular Lewis acid, a proton. The Lewis theory is more general than the Bronsted-Lowry theory. For instance, metal atoms and ions can act as Lewis acids, as in the formation of Ni(CO)4 from nickel atoms (the Lewis acid) and carbon monoxide (the Lewis base), but they are not Bronsted acids. Likewise, a Bronsted base is a special kind of Lewis base, one that can use a lone pair of electrons to form a coordinate covalent bond to a proton. For instance, an oxide ion is a Lewis base. It forms a coordinate covalent bond to a proton, a Lewis acid, by supplying both the electrons for the bond ... [Pg.518]

The formation of polyesters from carbon monoxide and propylene oxide using a cobalt catalyst may involve an alternate coordination on the metal and an insertion of monomers into the carbon-transition metal bond240. ... [Pg.19]

On the other hand, when the oxidative carbonylation of a ,a -disubstituted propynylamines was carried out in the presence of an excess of CO2, the intermediate carbamate species could undergo cyclization with incorporation of CO2 into the five-membered cycle, either by direct nucleophilic attack of the carbamate oxygen to the triple bond coordinated to Pd(II) (Scheme 33, path a) or through the intermediate formation of a palladium carbamate complex followed by triple bond insertion (Scheme 33, path b). Carbon monoxide insertion into the Pd - C bond of the resulting stereoisomeric vinylpalladium intermediates then led to the final oxazolidi-none derivatives. [Pg.263]

Figure 15.8 a simple example is presented of a subsequent insertion of CO and methanolysis of the palladium acyl intermediate [14], This is not a very common reaction, because both the ligand requirements and the redox conditions for Wacker and carbonylation chemistry are not compatible. For insertion reactions one would use cis coordinating diphosphines or diimines, which makes the palladium centre more electron-rich and thus the nucleophilic attack in the Wacker part of the scheme will be slowed down. In addition, the oxidants present may lead to catalytic oxidation of carbon monoxide. [Pg.327]

Previous studies in conventional reactor setups at Philip Morris USA have demonstrated the significant effectiveness of nanoparticle iron oxide on the oxidation of carbon monoxide when compared to the conventional, micron-sized iron oxide, " as well as its effect on the combustion and pyrolysis of biomass and biomass model compounds.These effects are derived from a higher reactivity of nanoparticles that are attributed to a higher BET surface area as well as the coordination of unsaturated sites on the surfaces. The chemical and electronic properties of nanoparticle iron oxide could also contribute to its higher reactivity. In this work, we present the possibility of using nanoparticle iron oxide as a catalyst for the decomposition of phenolic compounds. [Pg.222]


See other pages where Carbon monoxide coordinated, oxidation is mentioned: [Pg.146]    [Pg.48]    [Pg.2112]    [Pg.252]    [Pg.202]    [Pg.11]    [Pg.2111]    [Pg.318]    [Pg.433]    [Pg.436]    [Pg.113]    [Pg.201]    [Pg.206]    [Pg.207]    [Pg.212]    [Pg.222]    [Pg.196]    [Pg.208]    [Pg.213]    [Pg.223]    [Pg.157]    [Pg.149]    [Pg.183]    [Pg.153]    [Pg.100]    [Pg.87]    [Pg.133]    [Pg.175]    [Pg.739]    [Pg.750]    [Pg.172]    [Pg.336]    [Pg.98]    [Pg.27]    [Pg.38]    [Pg.241]    [Pg.974]    [Pg.153]    [Pg.129]    [Pg.129]    [Pg.190]   
See also in sourсe #XX -- [ Pg.246 ]




SEARCH



Carbon coordinated

Carbon monoxide, oxidation

Monoxide oxides

© 2024 chempedia.info