Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon metabolism carboxylating enzyme

The metabolism of cyanide has been studied in animals. The proposed metabolic pathways shown in Figure 2-3 are (1) the major pathway, conversion to thiocyanate by either rhodanese or 3-mercapto-pyruvate sulfur transferase (2) conversion to 2-aminothiazoline-4-carboxylic acid (Wood and Cooley 1956) (3) incorporation into a 1-carbon metabolic pool (Boxer and Richards 1952) or (4) combining with hydroxocobalamin to form cyanocobalamin (vitamin B12) (Ansell and Lewis 1970). Thiocyanate has been shown to account for 60-80% of an administered cyanide dose (Blakley and Coop 1949 Wood and Cooley 1956) while 2-aminothiazoline-4-carboxylic acid accounts for about 15% of the dose (Wood and Cooley 1956). The conversion of cyanide to thiocyanate was first demonstrated in 1894. Conversion of cyanide to thiocyanate is enhanced when cyanide poisoning is treated by intravenous administration of a sulfur donor (Smith 1996 Way 1984). The sulfur donor must have a sulfane sulfur, a sulfur bonded to another sulfur (e.g., sodium thiosulfate). During conversion by rhodanese, a sulfur atom is transferred from the donor to the enzyme, forming a persulfide intermediate. The persulfide sulfur is then transferred... [Pg.74]

Today the metabolic network of the central metabolism of C. glutamicum involving glycolysis, pentose phosphate pathway (PPP), TCA cycle as well as anaplerotic and gluconeogenetic reactions is well known (Fig. 1). Different enzymes are involved in the interconversion of carbon between TCA cycle (malate/oxaloacetate) and glycolysis (pyruvate/phosphoenolpyruvate). For anaplerotic replenishment of the TCA cycle, C. glutamicum exhibits pyruvate carboxylase [20] and phosphoenol-pyruvate (PEP) carboxylase as carboxylating enzymes. Malic enzyme [21] and PEP carboxykinase [22,23] catalyze decarboxylation reactions from the TCA cycle... [Pg.23]

The coenzyme form of pantothenic acid is coenzyme A and is represented as CoASH. The thiol group acts as a carrier of acyl group. It is an important coenzyme involved in fatty acid oxidation, pyruvate oxidation and is also biosynthesis of terpenes. The epsilon amino group of lysine in carboxylase enzymes combines with the carboxyl carrier protein (BCCP or biocytin) and serve as an intermediate carrier of C02. Acetyl CoA pyruvate and propionyl carboxylayse require the participation of BCCP. The coenzyme form of folic acid is tetrahydro folic acid. It is associated with one carbon metabolism. The oxidised and reduced forms of lipoic acid function as coenzyme in pyruvate and a-ketoglutarate dehydrogenase complexes. The 5-deoxy adenosyl and methyl cobalamins function as coenzyme forms of vitamin B12. Methyl cobalamin is involved in the conversion of homocysteine to methionine. [Pg.232]

Since its demonstration in photosynthetic organisms, the carboxylation enzyme has been demonstrated in E, coli and Thiobacillus. The physiological significance of this enzyme in nonphotosynthetic organisms is not clear, but its occurrence emphasizes that the carbon metabolism of photosynthesis is an enzymatic process distinct from the photochemical reaction. [Pg.129]

The fundamental basis of photosynthetic carbon metabolism is the incorporation of carbon dioxide by ribulose-bisphosphate carboxylase (rubisco). This leads to the synthesis of three-carbon sugars which are either exported from the chloroplast or metabolized to regenerate the acceptor ribulose bisphosphate. Rubisco is a bifunctional enzyme in that, in parallel to carboxylation, it catalyzes an oxygenation reaction that leads to phospho-glycolate. This is the starting point for photorespiratory metabolism, which will be discussed below (Section 1.6.2). In C4 plants, the conventional C3 pattern of the photosynthetic carbon reduction Calvin cycle is confined to the bundle sheath cells. The surrounding mesophyll cells act as an ancillary carbon dioxide pump, fixing carbon dioxide via phosphoenolpyruvate carboxylase into C4 acids. These are transported to the bundle sheath for decarboxylation.In this way, photorespiration is limited because of the elevated carbon dioxide levels. [Pg.18]

Fatty acids with odd numbers of carbon atoms are rare in mammals, but fairly common in plants and marine organisms. Humans and animals whose diets include these food sources metabolize odd-carbon fatty acids via the /3-oxida-tion pathway. The final product of /3-oxidation in this case is the 3-carbon pro-pionyl-CoA instead of acetyl-CoA. Three specialized enzymes then carry out the reactions that convert propionyl-CoA to succinyl-CoA, a TCA cycle intermediate. (Because propionyl-CoA is a degradation product of methionine, valine, and isoleucine, this sequence of reactions is also important in amino acid catabolism, as we shall see in Chapter 26.) The pathway involves an initial carboxylation at the a-carbon of propionyl-CoA to produce D-methylmalonyl-CoA (Figure 24.19). The reaction is catalyzed by a biotin-dependent enzyme, propionyl-CoA carboxylase. The mechanism involves ATP-driven carboxylation of biotin at Nj, followed by nucleophilic attack by the a-carbanion of propi-onyl-CoA in a stereo-specific manner. [Pg.791]

Primary BAs, cholic acid (CA), and chenodeoxycholic acid (CDCA), are synthesised via the 5/3-saturation of the cholesterol double bond by enzymes of the hepa-tocyte microsomal fraction, epimerisation of the 3/j-hydroxyl group to the 3a-con-figuration, and further insertion of a 7 -hydroxyl group, with or without a further 12a-hydroxyl group. After shortening of the side chain by three carbons, oxidation of the terminal carbon of the side chain occurs to form the carboxylic group [3]. Alternative metabolic sequences add to the complexity of this metabolic pathway (Fig. 5.4.2). [Pg.607]

The oxidation of aciy lic acid can be rationalized in terms of the endogenous catabolism of propionic acid, in which acrylyl coenzyme A is an intermediate. This pathway is analogous with fatty acid 3-oxidation, common to all species and, unlike the corresponding pathway in plants, does not involve vitamin 8,2. 3-Hydroxypropionic acid has been found as an intennediate in the metabolism of acrylic acid in vitro in rat liver and mitochondria (Finch Frederick, 1992). The CO2 excreted derives from the carboxyl carbon, while carbon atoms 2 and 3 are converted to acetyl coenzyme A, which participates in a variety of reactions. The oxidation of acrylic acid is catalysed by enzymes in a variety of tissues (Black Finch, 1995). In mice, the greatest activity was found in kidney, which was five times more active than liver and 50 times more active than skin (Black et al., 1993). [Pg.1225]

The question is therefore, what are the principal requirements of an autotrophic carbon-fixation mechanism An organic molecule serves as a C02 acceptor molecule, which becomes carboxylated by a carboxylase enzyme. This C02 acceptor molecule needs to be regenerated in a reductive autocatalytic cycle. The product that can be drained off from such a metabolic cycle should be a central cellular metabolite, from which all cellular building blocks for polymers can be derived examples of such central metabolites are acetyl-CoA, pyruvate, oxaloacetate, 2-oxoghitarate, phosphoe-nolpyruvate, and 3-phosphoglycerate. Importantly, the intermediates should not be toxic to the cell. The irreversible steps of the pathway are driven by ATP hydrolysis, while the reduction steps are driven by low-potential reduced coenzymes. [Pg.34]

Vitamin K cycle—metabolic interconversions of vitamin K associated with the synthesis of vitamin K-dependent clotting factors. Vitamin K1 or K2 is activated by reduction to the hydroquinone form (KH2). Stepwise oxidation to vitamin K epoxide (KO) is coupled to prothrombin carboxylation by the enzyme carboxylase. The reactivation of vitamin K epoxide is the warfarin-sensitive step (warfarin). The R on the vitamin K molecule represents a 20-carbon phytyl side chain in vitamin Ki and a 30- to 65-carbon polyprenyl side chain in vitamin K2. [Pg.770]

A common step in the metabolism of alcohols is carried out by alcohol dehydrogenase enzymes that produce aldehydes from primary alcohols that have the -OH group on an end carbon and produce ketones from secondary alcohols that have the -OH group on a middle carbon, as shown by the examples in Reactions 7.3.6 and 7.3.7. As indicated by the double arrows in these reactions, the reactions are reversible and the aldehydes and ketones can be converted back to alcohols. The oxidation of aldehydes to carboxylic acids occurs readily (Reaction 7.3.8). This is an important detoxication process because aldehydes are lipid soluble and relatively toxic, whereas carboxylic acids are more water soluble and undergo phase n reactions leading to their elimination. [Pg.164]

This step leaves two cleavage products. The first, derived from the two carbons at the carboxyl end of the fatty acid, is acetyl-CoA, which can be further metabolized in the TCA cycle. The second cleavage product is a shorter fatty acyl-CoA. Thus, for example, the initial step of digesting a fatty acid with 16 carbons is an acyl-CoA molecule where the acyl group has 14 carbons and a molecule of acetyl-CoA. The P-oxidation scheme may be used to accommodate unsaturated fatty acids also. The reactions occur as described previously for the saturated portions of the molecule. Where a trans carbon-carbon double bond occurs between the %- and p-carbons of the acyl-CoA, the accommodation is fairly simple reaction 1 isn t needed. Where the double bonds are in the cis configuration, or are between the P and y carbons, isomerase enzymes change the location of the double bonds to make recognizable substrates for P-oxidation. [Pg.14]

Methane and carbon dioxide are the exceptions. Methane is an end product of anaerobic metabolism of many microorganisms, and carbon dioxide (for carboxylation) is handled by biotin-containing enzymes. [Pg.448]


See other pages where Carbon metabolism carboxylating enzyme is mentioned: [Pg.21]    [Pg.175]    [Pg.8]    [Pg.350]    [Pg.445]    [Pg.717]    [Pg.51]    [Pg.1116]    [Pg.184]    [Pg.187]    [Pg.92]    [Pg.11]    [Pg.116]    [Pg.1116]    [Pg.204]    [Pg.196]    [Pg.29]    [Pg.378]    [Pg.362]    [Pg.5]    [Pg.163]    [Pg.309]    [Pg.82]    [Pg.162]    [Pg.5]    [Pg.307]    [Pg.339]    [Pg.406]    [Pg.121]    [Pg.126]    [Pg.55]    [Pg.38]    [Pg.596]    [Pg.219]    [Pg.259]    [Pg.122]   
See also in sourсe #XX -- [ Pg.22 ]




SEARCH



Carboxyl carbon

Carboxylation enzyme

Carboxylic carbon

Enzymes carbon

Metabolic enzymes

Metabolism enzymes

Metabolizing enzymes

© 2024 chempedia.info