Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon for synthesis

In the ruminant mammary tissue, it appears that acetate and /3-hydroxybutyrate contribute almost equally as primers for fatty acid synthesis (Palmquist et al. 1969 Smith and McCarthy 1969 Luick and Kameoka 1966). In nonruminant mammary tissue there is a preference for butyryl-CoA over acetyl-CoA as a primer. This preference increases with the length of the fatty acid being synthesized (Lin and Kumar 1972 Smith and Abraham 1971). The primary source of carbons for elongation is malonyl-CoA synthesized from acetate. The acetate is derived from blood acetate or from catabolism of glucose and is activated to acetyl-CoA by the action of acetyl-CoA synthetase and then converted to malonyl-CoA via the action of acetyl-CoA carboxylase (Moore and Christie, 1978). Acetyl-CoA carboxylase requires biotin to function. While this pathway is the primary source of carbons for synthesis of fatty acids, there also appears to be a nonbiotin pathway for synthesis of fatty acids C4, C6, and C8 in ruminant mammary-tissue (Kumar et al. 1965 McCarthy and Smith 1972). This nonmalonyl pathway for short chain fatty acid synthesis may be a reversal of the /3-oxidation pathway (Lin and Kumar 1972). [Pg.174]

Nitrite and nitrate are reduced to gaseous nitrogen by a variety of facultative heterotrophs in an anoxic environment. An organic source, such as acetic acid, sewage, acetone, ethanol, methanol, or sugar is needed to act as hydrogen donor (oxygen acceptor) and to supply carbon for synthesis. Methanol is used, as it is frequently the least expensive. The basic reactions take the form ... [Pg.554]

D) fatty acids released from adipose tissue provide carbon for synthesis of glucose. [Pg.37]

Methane. The largest use of methane is for synthesis gas, a mixture of hydrogen and carbon monoxide. Synthesis gas, in turn, is the primary feed for the production of ammonia (qv) and methanol (qv). Synthesis gas is produced by steam reforming of methane over a nickel catalyst. [Pg.400]

Because the synthesis reactions are exothermic with a net decrease in molar volume, equiUbrium conversions of the carbon oxides to methanol by reactions 1 and 2 are favored by high pressure and low temperature, as shown for the indicated reformed natural gas composition in Figure 1. The mechanism of methanol synthesis on the copper—zinc—alumina catalyst was elucidated as recentiy as 1990 (7). For a pure H2—CO mixture, carbon monoxide is adsorbed on the copper surface where it is hydrogenated to methanol. When CO2 is added to the reacting mixture, the copper surface becomes partially covered by adsorbed oxygen by the reaction C02 CO + O (ads). This results in a change in mechanism where CO reacts with the adsorbed oxygen to form CO2, which becomes the primary source of carbon for methanol. [Pg.275]

Phosphorothioates. All three synthetic approaches appHcable to unmodified oligonucleotides can be adapted for synthesis of phosphorothioates (11) (33,46). If all of the phosphodiester linkages in an oligonucleotide are to be replaced with phosphorothioates, the ff-phosphonate method for coupling, followed by oxidation with Sg in carbon disulfide and triethylamine in the final step, is the most straightforward method. [Pg.262]

Formaldehyde reacts with the hydrogen on the a-carbon of the fatty acid from which the oxazoline was formed to yield a vinyl monomer which can be polymerized or utilized for synthesis (4). Thus, esters of the oxazoline formed from TRIS AMINO undergo the reaction... [Pg.17]

Synthesis Gas Preparation Processes. Synthesis gas for ammonia production consists of hydrogen and nitrogen in about a three to one mole ratio, residual methane, argon introduced with the process air, and traces of carbon oxides. There are several processes available for synthesis gas generation and each is characterized by the specific feedstock used. A typical synthesis gas composition by volume is hydrogen, 73.65% nitrogen, 24.55% methane, <1 ppm-0.8% argon, 100 ppm—0.34% carbon oxides, 2—10 ppm and water vapor, 0.1 ppm. [Pg.340]

Methods for synthesis of the thia olium ring also have matured technically based on the cost, throughput, and waste disposal issues of production. In earlier syntheses, the 2-carbon and the sulfur atom were suppHed as potassium dithioformate, made from chloroform and potassium sulfide. [Pg.90]

The earliest method for manufacturiag carbon disulfide involved synthesis from the elements by reaction of sulfur and carbon as hardwood charcoal in externally heated retorts. Safety concerns, short Hves of the retorts, and low production capacities led to the development of an electric furnace process, also based on reaction of sulfur and charcoal. The commercial use of hydrocarbons as the source of carbon was developed in the 1950s, and it was still the predominate process worldwide in 1991. That route, using methane and sulfur as the feedstock, provides high capacity in an economical, continuous unit. Retort and electric furnace processes are stiU used in locations where methane is unavailable or where small plants are economically viable, for example in certain parts of Africa, China, India, Russia, Eastern Europe, South America, and the Middle East. Other technologies for synthesis of carbon disulfide have been advocated, but none has reached commercial significance. [Pg.29]

Hydroxyl Group. The OH group of cyanohydrins is subject to displacement with other electronegative groups. Cyanohydrins react with ammonia to yield amino nitriles. This is a step in the Strecker synthesis of amino acids. A one-step synthesis of a-amino acids involves treatment of cyanohydrins with ammonia and ammonium carbonate under pressure. Thus acetone cyanohydrin, when heated at 160°C with ammonia and ammonium carbonate for 6 h, gives a-aminoisobutyric acid [62-57-7] in 86% yield (7). Primary and secondary amines can also be used to displace the hydroxyl group to obtain A/-substituted and Ai,A/-disubstituted a-amino nitriles. The Strecker synthesis can also be appHed to aromatic ketones. Similarly, hydrazine reacts with two molecules of cyanohydrin to give the disubstituted hydrazine. [Pg.411]

The catalytic method provides the basis for synthesis of carbon tubules of a large variety of forms. Straight tubules, as well as bent and helically wound tubules, were observed. The latter regular helices of fullerene diameter can be of special interest from both theoretical and practical points of view. [Pg.25]

FIGURE 25.1 The citrate-malate-pyruvate shuttle provides cytosolic acetate units and reducing equivalents (electrons) for fatty acid synthesis. The shuttle collects carbon substrates, primarily from glycolysis but also from fatty acid oxidation and amino acid catabolism. Most of the reducing equivalents are glycolytic in origin. Pathways that provide carbon for fatty acid synthesis are shown in blue pathways that supply electrons for fatty acid synthesis are shown in red. [Pg.804]

Isoindolines comprise a group of well-characterized and easily synthesized substances, and being at the next stable reduction state below that of isoindoles, they constitute suitable precursors for synthesis of the latter. In principle, either oxidation or elimination from isoindolines should lead to isoindoles however, in view of the susceptibility of isoindoles to further oxidation, elimination has been preferred, and in all cases reported the leaving group has been placed on nitrogen rather than carbon. [Pg.116]

Cyclopropanes are now readily available and have become useful, through hydrogenolysis, for synthesis of compounds containing quaternary carbons, em-dialkyl, r-butyl, and angular-methyl substituents (779), compounds often available only with difficulty otherwise (.77,5i,55,750,756), Cyclopropanes can be formed in good yields by hydrogenation of cyclopropenes (26). [Pg.174]

Oxides, hydroxides, chlorides or carbonates of the second metal can be used for synthesis instead of fluorides, but the necessary amount of ammonium hydrofluoride must be recalculated and added in order to assure complete fluorination of the second compound. Some excess of ammonium hydrofluoride is recommended to avoid insufficient fluorination. Remainders of NH4HF2 decompose and separate out from the system upon reaching the final temperature. [Pg.46]

Carbon from the substrate glucose is converted into the carbon of the cells, phenylalanine, carbon dioxide and byproducts. Carbon balance calculations thus give us more understanding of the amount of carbon in glucose used for cell mass production, for synthesis of the wanted produd, maintenance energy and byproduct formation. [Pg.256]

The steroid ring structure is complex and contains many chiral carbons (for example at positions 5, 8, 9,10,13,14 and 17) thus many optical isomers are possible. (The actual number of optical isomers is given by 2" where n = the number of chiral carbons). From your knowledge of biochemistry you should have realised that only one of these optical isomers is likely to be biologically active. Synthesis of such a complex chemical structure to produce a single isomeric form is extremely difficult, especially when it is realised that many chemical reactions lead to the formation of racemic mixtures. Thus, for complete chemical synthesis, we must anticipate that... [Pg.297]

The Fischer-Tropsch and Related Processes for Synthesis of Hydrocarbons by Hydrogenation of Carbon Monoxide H. H. Storch... [Pg.422]

Stabilization of intermediates by strong adsorption will frequently be a necessary precondition for synthesis. Thus, in the case of the Kolbe reaction, further oxidation of the radicals is prevented the formation of metal-carbon bonds in the reduction of alkyl halides (Fleischmann et al., 1971a Galli and Olivani, 1970) or oxidation of Grignard reagents (Fleischmann et al., 1972c) is shown by the isolation of organometallic... [Pg.169]


See other pages where Carbon for synthesis is mentioned: [Pg.406]    [Pg.712]    [Pg.423]    [Pg.257]    [Pg.406]    [Pg.712]    [Pg.423]    [Pg.257]    [Pg.182]    [Pg.3]    [Pg.83]    [Pg.342]    [Pg.343]    [Pg.169]    [Pg.557]    [Pg.558]    [Pg.44]    [Pg.1]    [Pg.43]    [Pg.117]    [Pg.576]    [Pg.789]    [Pg.31]    [Pg.138]    [Pg.163]    [Pg.39]    [Pg.312]    [Pg.50]    [Pg.332]    [Pg.145]    [Pg.311]    [Pg.110]    [Pg.189]   


SEARCH



Activated carbon supported ruthenium catalysts for ammonia synthesis

Carbon synthesis

Carbonates synthesis

New Nano- Through Macro-Carbons for Energy Systems Synthesis, Modeling, Characterization

Selective Synthesis of Carbon Nanofibers as Better Catalyst Supports for Low-temperature Fuel Cells

Sources of Carbon and Reducing Equivalents for Fatty Acid Synthesis

Strategies for the Rational Synthesis of Carbon Nanotubes

Structure and Synthesis Methods for Carbon Nanotubes

© 2024 chempedia.info