Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon disulfide 4+2 cycloaddition reactions

The 27T-electrons of the carbon-nitrogen double bond of 1-azirines can participate in thermal symmetry-allowed [4 + 2] cycloadditions with a variety of substrates such as cyclo-pentadienones, isobenzofurans, triazines and tetrazines 71AHC(13)45). Cycloadditions also occur with heterocumulenes such as ketenes, ketenimines, isocyanates and carbon disulfide. It is also possible for the 27r-electrons of 1-azirines to participate in ene reactions 73HCA1351). [Pg.59]

Azirine, trans-2-methyl-3-phenyl-racemization, 7, 33, 34 1-Azirine, 2-phenyl-reactions, 7, 69 with carbon disulfide, S, 153 1-Azirine, 3-vinyl-rearrangements, 7, 67 Azirines, 7, 47-93 cycloaddition reactions, 7, 26 fused ring derivatives, 7, 47-93 imidazole synthesis from, 5, 487-488 photochemical addition reactions to carbonyl compounds, 7, 56 photolysis, 5, 780, 7, 28 protonated... [Pg.528]

This silylene formation from 27 under mild conditions permits the synthesis of a variety of interesting carbo- and heterocycles, most of which are new types of compounds. The results are summarized in Schemes 5 and 6. The reactions with benzene and naphthalene represent the first examples of [2+1] cycloadditions of a silylene with aromatic C=C double bonds.59 623 The reactions with carbon disulfide and isocyanide (Scheme 6) are also of great interest because of their unusual reaction patterns.62b... [Pg.252]

Isonitrile complexes, having a similar electronic structure to carbonyl complexes, can also react with nucleophiles. Amino-substituted carbene complexes can be prepared in this way (Figure 2.6) [109-112]. Complexes of acceptor-substituted isonitriles can undergo 1,3-dipolar cycloaddition reactions with aldehydes, electron-poor olefins [113], isocyanates [114,115], carbon disulfide [115], etc., to yield heterocycloalkylidene complexes (Figure 2.6). [Pg.21]

The meso-ionic 1,3-oxazol-S-ones show an incredible array of cycloaddition reactions. Reference has already been made to the cycloaddition reactions of the derivative 50, which are interpreted as involving cycloaddition to the valence tautomer 51. In addition, an extremely comprehensive study of the 1,3-dipolar cycloaddition reactions of meso-ionic l,3-oxazol-5-ones (66) has been undertaken by Huisgen and his co-workers. The 1,3-dipolarophiles that have been examined include alkenes, alkynes, aldehydes, a-keto esters, a-diketones, thiobenzophenone, thiono esters, carbon oxysulfide, carbon disulfide, nitriles, nitro-, nitroso-, and azo-compounds, and cyclopropane and cyclobutene derivatives. In these reactions the l,3-oxazol-5-ones (66)... [Pg.18]

Photochemical cycloaddition reactions between sydnones (1) and 1,3-dipolarophiles take place to give products which are different from, but isomeric with, the thermal 1,3-dipolar cycloaddition products. These results are directly interpreted in terms of reactions between the 1,3-dipolarophiles and Ae nit mine (316). The photochemical reactions between sydnones and the following 1,3-dipolarophiles have been reported dicyclopentadiene, dimethyl acetylene dicarboxylate, dimethyl maleate, dimethyl fumarate, indene, carbon dioxide, and carbon disulfide. ... [Pg.70]

Amino-l,2,4-thiadiazoles 191 are obtained when ether is used (249), while 5-alkylthio-1,2,3-triazoles 192 result when the reaction is carried out in THF (250). Reaction of 3 with carbon disulfide leads to 5-alkylthio-l,2,3-thiadiazoles 193 (251). While 3 can act as a synthetic equivalent of the RC—N—N synthon (R = H, SiMea) in all these reactions, it should be emphasized that it does not react by a concerted 1,3-dipolar cycloaddition but rather by a stepwise polar mechanism. The highly nucleophilic character of 3 can account for why diazomethane and... [Pg.579]

It has been shown that thioketenes, isothiocyanates, and carbon disulfide can react with hydrazoic acid to form 5-alkyl-, 5-amino-, and 5-thiosubstituted-l,2,3,4-thiatriazoles <1996CHEC-II(4)691>. Most probably these reactions proceed via [3+2] cycloaddition of azide anion to C=S bond. [Pg.475]

The formation of complexes of l,2,3,4-thiatriazole-5-thiol has been well described in CHEC-II(1996) 1,2,3,4-thiatriazole-5-thiol can form complexes with various metals such as palladium, nickel, platinum, cobalt, zinc, etc. <1996CHEC-II(4)691>. These complexes can be prepared either by cycloaddition reactions of carbon disulfide with metal complexes of azide anion (Equation 20) or directly from the sodium salt of l,2,3,4-thiatriazole-5-thiol with metal salts. For instance, the palladium-thiatriazole complex 179 can be obtained as shown in Equation (20) or it may be formed from palladium(ll) nitrate, triphenylphosphine, and sodium thiatriazolate-5-thiolate. It should be noted that complexes of azide ion react with carbon disulfide much faster than sodium azide itself. [Pg.479]

In contrast to isocyanates, isothiocyanates have hardly been examined as cycloaddition components, because the strong coordination of organosulfur compounds frequently deactivates a catalytic species [21]. Some organoruthe-nium complexes, however, recently proved to be efficient catalysts for the formation of carbon-sulfur bonds [21]. The catalytic cycloaddition of diynes with isothiocyanates was also successfully achieved using Cp RuCl(cod) as a precatalyst [22]. Importantly, the cycloaddition took place at the C=S double bonds of the isothiocyanates to afford thiopyranimines 26 (Eq. 13). This reaction requires 10 mol % of the precatalyst as well as the diynes possessing a quarternary carbon center at the 4-position. When excess amounts of carbon disulfide were also employed in place of the isothiocyanates, a bicyclic dithiopyrone 26 [X is C(C02Me)2, Z is S] was obtained in 50% yield. [Pg.255]

Azine approach. 1 -Pyridinimines undergo 1,3-dipolar cycloaddition reactions with thiones. In the reaction between 2-isoquinolinimine and carbon disulfide the mesoionic thiadiazole (716) is formed the formation of (716) involves a secondary dehydrogenation of the initial adduct. With diphenyl thionocarbonate, phenoxy group expulsion is succeeded by cyclization leading to the adduct (717) (62TL387). [Pg.743]

Addition of anionic nucleophiles to alkenes and to heteronuclear double bond systems (C=0, C=S) also lies within the scope of this Section. Chloride and cyanide ions are effieient initiators of the polymerization and copolymerization of acrylonitrile in dipolar non-HBD solvents, as reported by Parker [6], Even some 1,3-dipolar cycloaddition reactions leading to heterocyclic compounds are often better carried out in dipolar non-HBD solvents in order to increase rates and yields [311], The rate of alkaline hydrolysis of ethyl and 4-nitrophenyl acetate in dimethyl sulfoxide/water mixtures increases with increasing dimethyl sulfoxide concentration due to the increased activity of the hydroxide ion. This is presumably caused by its reduced solvation in the dipolar non-HBD solvent [312, 313]. Dimethyl sulfoxide greatly accelerates the formation of oximes from carbonyl compounds and hydroxylamine, as shown for substituted 9-oxofluorenes [314]. Nucleophilic attack on carbon disulfide by cyanide ion is possible only in A,A-dimethylformamide [315]. The fluoride ion, dissolved as tetraalkylammo-nium fluoride in dipolar difluoromethane, even reacts with carbon dioxide to yield the fluorocarbonate ion, F-C02 [840]. [Pg.254]


See other pages where Carbon disulfide 4+2 cycloaddition reactions is mentioned: [Pg.7]    [Pg.153]    [Pg.55]    [Pg.270]    [Pg.28]    [Pg.103]    [Pg.119]    [Pg.815]    [Pg.102]    [Pg.22]    [Pg.55]    [Pg.607]    [Pg.55]    [Pg.175]    [Pg.187]    [Pg.236]    [Pg.479]    [Pg.961]    [Pg.607]    [Pg.318]    [Pg.52]    [Pg.370]    [Pg.1255]    [Pg.21]    [Pg.153]    [Pg.57]    [Pg.561]    [Pg.153]   


SEARCH



Carbon cycloaddition

Carbon cycloadditions

Carbon disulfid

Carbon disulfide

Carbon disulfide reactions

Carbon disulfides

Carbonates 3 + 2] cycloaddition reactions

Cycloaddition carbon disulfide

Disulfides reaction

© 2024 chempedia.info