Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon dioxide model structure

The transformation of the hydrophobic periphery composed of bromo substituents into a hydrophilic wrapping of carboxylic acid functions was achieved by reacting 31 with (i) n-butyllithium and (ii) carbon dioxide. The polymer-analogous transformation provides water soluble, amphiphilic derivatives of 31 which constitute useful covalently bonded unimolecular models for micellar structures. [Pg.41]

CO3 species was formed and the X-ray structure solved. It is thought that the carbonate species forms on reaction with water, which was problematic in the selected strategy, as water was produced in the formation of the dialkyl carbonates. Other problems included compound solubility and the stability of the monoalkyl carbonate complex. Van Eldik and co-workers also carried out a detailed kinetic study of the hydration of carbon dioxide and the dehydration of bicarbonate both in the presence and absence of the zinc complex of 1,5,9-triazacyclododecane (12[ane]N3). The zinc hydroxo form is shown to catalyze the hydration reaction and only the aquo complex catalyzes the dehydration of bicarbonate. Kinetic data including second order rate constants were discussed in reference to other model systems and the enzyme carbonic anhy-drase.459 The zinc complex of the tetraamine 1,4,7,10-tetraazacyclododecane (cyclen) was also studied as a catalyst for these reactions in aqueous solution and comparison of activity suggests formation of a bidentate bicarbonate intermediate inhibits the catalytic activity. Van Eldik concludes that a unidentate bicarbonate intermediate is most likely to the active species in the enzyme carbonic anhydrase.460... [Pg.1185]

Synthesis of functional models of carbonic anhydrase has been attempted with the isolation of an initial mononuclear zinc hydroxide complex with the ligand hydrotris(3-t-butyl-5-methyl-pyrazolyl)borate. Vahrenkamp and co-workers demonstrate the functional as well as the structural analogy to the enzyme carbonic anhydrase. A reversible uptake of carbon dioxide was observed, although the unstable bicarbonate complex rapidly forms a dinuclear bridged complex. In addition, coordinated carbonate esters have been formed and hydrolyzed, and inhibition by small ions noted.462 A number of related complexes are discussed in the earlier Section 6.8.4. [Pg.1185]

Stanton and Merz studied the reaction of carbon dioxide addition to zinc hydroxide, as a model for zinc metallo-enzyme human carbonic anhydrase IIJ 36. It was shown that the LDA calculations (DFT(SVWN)) were not reliable for locating transition state structures whereas the post-LDA ones (DFT(B88/P86)) led to the transition state structures and ener-... [Pg.104]

Carbon monoxide oxidation is a relatively simple reaction, and generally its structurally insensitive nature makes it an ideal model of heterogeneous catalytic reactions. Each of the important mechanistic steps of this reaction, such as reactant adsorption and desorption, surface reaction, and desorption of products, has been studied extensively using modem surface-science techniques.17 The structure insensitivity of this reaction is illustrated in Figure 10.4. Here, carbon dioxide turnover frequencies over Rh(l 11) and Rh(100) surfaces are compared with supported Rh catalysts.3 As with CO hydrogenation on nickel, it is readily apparent that, not only does the choice of surface plane matters, but also the size of the active species.18-21 Studies of this system also indicated that, under the reaction conditions of Figure 10.4, the rhodium surface was covered with CO. This means that the reaction is limited by the desorption of carbon monoxide and the adsorption of oxygen. [Pg.340]

Fig. 4. Computer-generated crystal structure models nop row. left to right) Cuprite, zinc-blende, rutile, perovskite. iridymite (second row) Cristobalite. potassium dihydrogen phosphate, diamond, pyrites, arsenic (third rowt Cesium chloride, sodium chloride, wurtzite. copper, niccolite (fourth row) Spinel, graphite, beryllium, carbon dioxide, alpha i uanz. [AT T Bel Laboratories ... Fig. 4. Computer-generated crystal structure models nop row. left to right) Cuprite, zinc-blende, rutile, perovskite. iridymite (second row) Cristobalite. potassium dihydrogen phosphate, diamond, pyrites, arsenic (third rowt Cesium chloride, sodium chloride, wurtzite. copper, niccolite (fourth row) Spinel, graphite, beryllium, carbon dioxide, alpha i uanz. [AT T Bel Laboratories ...
When changing force field parameters of a compound, overall exactness of the model is determined by the parameterization criteria. As this work was parameterized to reproduce the solubility, which is related to the thermodynamic quantity of free energy, this raises the question of solvent structure, as the structure-energy relationship is evident even in the gas phase interactions. One way to test the solvent structure is to check the density of the aqueous solution as a rough estimate of the ability of the model to reproduce the correct intermolecular interaction between the solute and the solvent. For this purpose, additional MC simulations were carried out on the developed models to test their ability to reproduce the experimental density of solution, at the specified concentration. The density was calculated using the experimentally derived density equations for carbon dioxide in aqueous solution from Teng et al., which is calculated from the fyj, of the C02(aq) and the density of the pure solvent [36, 37]. [Pg.352]

The first step in the activation of carbon dioxide by transition metal compounds is the formation of a M-C02 complex, since it is through coordination that the electronic structure of this molecule, and hence its reactivity, can be substantially modified. Transition metal complexes containing carbon dioxide in its intact form have received considable attention in the last decade (Inone et al, 1982), mainly with the aim of finding model systems for the activation of C02 and subsequent transformation into organic chemicals of comercial interest (Aresta et al, 1987). Despite considerable and intensive work in this area, the number of structurally characterized carbon dioxide complexes is stilt very limited, and they have been found to contain side-on (Alvarez et al, 1986), 72 -coordinated and, l2 C-coordinated (Calabrese et al, 1983) C02. [Pg.99]

More industrial polyethylene copolymers were modeled using the same method of ADMET polymerization followed by hydrogenation using catalyst residue. Copolymers of ethylene-styrene, ethylene-vinyl chloride, and ethylene-acrylate were prepared to examine the effect of incorporation of available vinyl monomer feed stocks into polyethylene [81]. Previously prepared ADMET model copolymers include ethylene-co-carbon monoxide, ethylene-co-carbon dioxide, and ethylene-co-vinyl alcohol [82,83]. In most cases,these copolymers are unattainable by traditional chain polymerization chemistry, but a recent report has revealed a highly active Ni catalyst that can successfully copolymerize ethylene with some functionalized monomers [84]. Although catalyst advances are proving more and more useful in novel polymer synthesis, poor structure control and reactivity ratio considerations are still problematic in chain polymerization chemistry. [Pg.12]


See other pages where Carbon dioxide model structure is mentioned: [Pg.1960]    [Pg.119]    [Pg.199]    [Pg.44]    [Pg.13]    [Pg.1165]    [Pg.503]    [Pg.468]    [Pg.96]    [Pg.256]    [Pg.176]    [Pg.24]    [Pg.517]    [Pg.517]    [Pg.518]    [Pg.99]    [Pg.20]    [Pg.481]    [Pg.452]    [Pg.248]    [Pg.165]    [Pg.646]    [Pg.120]    [Pg.96]    [Pg.256]    [Pg.555]    [Pg.283]    [Pg.349]    [Pg.343]    [Pg.343]    [Pg.354]    [Pg.110]    [Pg.198]    [Pg.474]    [Pg.313]    [Pg.3410]    [Pg.385]    [Pg.657]    [Pg.685]   
See also in sourсe #XX -- [ Pg.100 ]




SEARCH



Carbon dioxide structure

Carbon structure

Carbonate structure

Carbonic model

Dioxides structural

Dioxides structure

© 2024 chempedia.info