Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Decarboxylation carbon dioxide

Photochemical a-cleavage of carboxylic acids results in loss of carbon dioxide (decarboxylation) rather than loss of carbon monoxide. The compound 2,4-dichlorophenoxyacetic acid, commonly known as (2,4-D), has been used extensively as a herbicide. This has posed a problem, because of the slow natural decomposition of 2,4-D in the environment. 2,4-D undergoes a-cleavage, undergoing decarboxylation ... [Pg.165]

Benzoin derivatives are used as initiators for the photochemical curing of printing inks, lacquers and other surface coatings, since the intermediate radicals in a reaction such as (4.7) can be diverted to initiate the polymerization of vinyl monomers. The use of an unsvm-metrical ketone (4.8) also shows that discrete radicals are produced in the cleavage reaction, since the ratio of hydrocarbon products is close to that expected tor a random combination of separated radicals. Esters that give rise to similar stabilized radicals undergo loss of carbon dioxide (decarboxylation) by a closely related mechanism, and this has proved useful in making quite strained cyclic systems bv irradiation of readily prepared cyclic diesters (4.9). [Pg.150]

FIGURE 5.6 Mechanistic possibilities for hydration of carbon dioxide (decarboxylation of carbonic acid). Based on structures in Ref. [80]. [Pg.136]

Compounds that readily undergo thermal decarboxylation include those related to malonic acid On being heated above its melting point malonic acid is converted to acetic acid and carbon dioxide... [Pg.817]

Section 19 17 11 Dicarboxylic acids (malonic acids) and p keto acids undergo thermal decarboxylation by a mechanism m which a p carbonyl group assists the departure of carbon dioxide... [Pg.824]

The carbon-carbon bond forming potential inherent m the Claisen and Dieckmann reac tions has been extensively exploited m organic synthesis Subsequent transformations of the p keto ester products permit the synthesis of other functional groups One of these transformations converts p keto esters to ketones it is based on the fact that p keto acids (not esters ) undergo decarboxylation readily (Section 19 17) Indeed p keto acids and their corresponding carboxylate anions as well lose carbon dioxide so easily that they tend to decarboxylate under the conditions of their formation... [Pg.893]

The four carbon atoms of the butanoyl group originate m two molecules of acetyl coenzyme A Carbon dioxide assists the reaction but is not incorporated into the prod uct The same carbon dioxide that is used to convert one molecule of acetyl coenzyme A to malonyl coenzyme A is regenerated m the decarboxylation step that accompanies carbon-carbon bond formation... [Pg.1075]

Step 1 An acetyl group is transferred to the a carbon atom of the malonyl group with evolution of carbon dioxide Presumably decarboxylation gives an enol which attacks the acetyl group... [Pg.1076]

In keeping with its biogenetic origin m three molecules of acetic acid mevalonic acid has six carbon atoms The conversion of mevalonate to isopentenyl pyrophosphate involves loss of the extra carbon as carbon dioxide First the alcohol hydroxyl groups of mevalonate are converted to phosphate ester functions—they are enzymatically phosphorylated with introduction of a simple phosphate at the tertiary site and a pyrophosphate at the primary site Decarboxylation m concert with loss of the terti ary phosphate introduces a carbon-carbon double bond and gives isopentenyl pyrophos phate the fundamental building block for formation of isoprenoid natural products... [Pg.1091]

Reaction 21 is the decarbonylation of the intermediate acyl radical and is especially important at higher temperatures it is the source of much of the carbon monoxide produced in hydrocarbon oxidations. Reaction 22 is a bimolecular radical reaction analogous to reaction 13. In this case, acyloxy radicals are generated they are unstable and decarboxylate readily, providing much of the carbon dioxide produced in hydrocarbon oxidations. An in-depth article on aldehyde oxidation has been pubHshed (43). [Pg.336]

Decomposition and Decarboxylation. Maleic anhydride undergoes anaerobic thermal decomposition in the gas phase in a homogeneous unimolecular reaction to give carbon monoxide, carbon dioxide, and acetylene [74-86-2] in equimolar amounts. The endothermic... [Pg.451]

Reactions. Heating an aqueous solution of malonic acid above 70°C results in its decomposition to acetic acid and carbon dioxide. Malonic acid is a useful tool for synthesizing a-unsaturated carboxyUc acids because of its abiUty to undergo decarboxylation and condensation with aldehydes or ketones at the methylene group. Cinnamic acids are formed from the reaction of malonic acid and benzaldehyde derivatives (1). If aUphatic aldehydes are used acryhc acids result (2). Similarly this facile decarboxylation combined with the condensation with an activated double bond yields a-substituted acetic acid derivatives. For example, 4-thiazohdine acetic acids (2) are readily prepared from 2,5-dihydro-l,3-thiazoles (3). A further feature of malonic acid is that it does not form an anhydride when heated with phosphorous pentoxide [1314-56-3] but rather carbon suboxide [504-64-3] [0=C=C=0], a toxic gas that reacts with water to reform malonic acid. [Pg.465]

Decomposition to styrene and carbon dioxide has been observed upon heating the acid to temperatures in excess of 150°C. The decarboxylation process can be accelerated with the addition of a bicycHc amine base (9). [Pg.173]

Practically all pyridazine-carboxylic and -polycarboxylic acids undergo decarboxylation when heated above 200 °C. As the corresponding products are usually isolated in high yields, decarboxylation is frequently used as the best synthetic route for many pyridazine and pyridazinone derivatives. For example, pyridazine-3-carboxylic acid eliminates carbon dioxide when heated at reduced pressure to give pyridazine in almost quantitative yield, but pyridazine is obtained in poor yield from pyridazine-4-carboxylic acid. Decarboxylation is usually carried out in acid solution, or by heating dry silver salts, while organic bases such as aniline, dimethylaniline and quinoline are used as catalysts for monodecarboxylation of pyridazine-4,5-dicarboxylic acids. [Pg.33]

Compound (122) is also obtained by decarboxylative ring-opening of l,2-benzisoxazole-3-carboxylic acid. It has also been concluded that the reaction involves an intermediateless, concerted loss of carbon dioxide via a transition state in which the negative charge is spread over the carboxyl group and the isox azole ring. [Pg.31]

The procedure for preparing 6-hydroxynicotinic acid is also based on a method described by von Pechmann. 6-Hydroxynico-tinic acid has also been prepared by decarboxylation of 6-hy-droxy-2,3-pyridinedicarboxylic acid by heating 6-hydra-zinonicotinic acid or its hydrazide with hydrochloric acid by the action of carbon dioxide on the sodium salt of a-pyridone at 180-200 and 20 atmospheres by heating the nitrile of 6-chlo-ronicotinic acid with alcoholic sodium hydroxide or hydrochloric acid from 6-aminonicotinic acid and by the prolonged action of concentrated ammonium hydroxide on methyl cou-malate. ... [Pg.46]

The loss of a molecule of carbon dioxide from a carboxylic acid is known as decarboxylation. [Pg.816]

Compound 2 is hydrolyzed in boiling water to form the hydrate of benzamidotrifluoroacetone (3) with loss of carbon dioxide. This behavior is readily understood in terms of a facile decarboxylation of the initially formed jS-keto acid. [Pg.77]

The anodic oxidation of the carboxylate anion 1 of a carboxylate salt to yield an alkane 3 is known as the Kolbe electrolytic synthesis By decarboxylation alkyl radicals 2 are formed, which subsequently can dimerize to an alkane. The initial step is the transfer of an electron from the carboxylate anion 1 to the anode. The carboxyl radical species 4 thus formed decomposes by loss of carbon dioxide. The resulting alkyl radical 2 dimerizes to give the alkane 3 " ... [Pg.183]

The Cg-amine, originally obtained by the methanolysis of kasugamycin, on treatment with lead tetraacetate or sodium periodate afforded a nitrile amine, with evolution of carbon dioxide, showing a maximum at 2200 cm.-1. This reaction is explained only by the structure (13). The -N-C=N group of the product can be formed by oxidative decarboxylation and can be easily rationalized by the present understanding of such reagents (2, 13) as shown below. On the other hand, the treatment... [Pg.36]

Decarboxylation (Section 22.7) The loss of carbon dioxide from a molecule. /3-Keto acids decarboxylate readily on heating. [Pg.1239]

Aliphatic acyloxy radicals undergo facile fragmentation with loss of carbon dioxide (Scheme 3,69) and, with few exceptions,428 do not have sufficient lifetime to enable direct reaction with monomers or other substrates. The rate constants for decarboxylation of aliphatic acyloxy radicals are in the range l 10xl09 M 1 s at 20 °C.429 lister end groups in polymers produced with aliphatic diacyl peroxides as initiators most likely arise by transfer to initiator (see 3.3.2.1,4). The chemistry of the carbon-centered radicals formed by (3-scission of acyloxy radicals is discussed above (see 3.4.1). [Pg.126]


See other pages where Decarboxylation carbon dioxide is mentioned: [Pg.109]    [Pg.125]    [Pg.235]    [Pg.85]    [Pg.109]    [Pg.125]    [Pg.235]    [Pg.85]    [Pg.18]    [Pg.29]    [Pg.164]    [Pg.283]    [Pg.286]    [Pg.103]    [Pg.146]    [Pg.72]    [Pg.92]    [Pg.541]    [Pg.587]    [Pg.740]    [Pg.163]    [Pg.5]    [Pg.91]    [Pg.206]    [Pg.132]    [Pg.161]    [Pg.167]    [Pg.19]    [Pg.308]    [Pg.374]   
See also in sourсe #XX -- [ Pg.332 , Pg.333 , Pg.334 ]




SEARCH



Carbon dioxide, addition from decarboxylation

© 2024 chempedia.info