Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon-chromium bonds

For earlier spectroscopic evidence of carbon-chromium bonds in enolates, see Ref. [62]. [Pg.103]

Allylic bromides can also serve as progenitors for nucleophilic organochromium reagents. An elegant example is found in Still and Mobilio s synthesis of the 14-membered cembranoid asperdiol (4) (see Scheme 2).7 In the key step, reduction of the carbon-bromine bond in 2 with chromium(n) chloride in THF is attended by intramolecular carbonyl addition, affording a 4 1 mixture of cembranoid diastereoisomers in favor of the desired isomer 3. Reductive cleav-... [Pg.713]

In the propagation centers of chromium oxide catalysts as well as in other catalysts of olefin polymerization the growth of a polymer chain proceeds as olefin insertion into the transition metal-carbon tr-bond. Krauss (70) stated that he succeeded in isolating, in methanol solution from the... [Pg.177]

The insertion of alkynes into a chromium-carbon double bond is not restricted to Fischer alkenylcarbene complexes. Numerous transformations of this kind have been performed with simple alkylcarbene complexes, from which unstable a,/J-unsaturated carbene complexes were formed in situ, and in turn underwent further reactions in several different ways. For example, reaction of the 1-me-thoxyethylidene complex 6a with the conjugated enyne-ketimines and -ketones 131 afforded pyrrole [92] and furan 134 derivatives [93], respectively. The alkyne-inserted intermediate 132 apparently undergoes 671-electrocyclization and reductive elimination to afford enol ether 133, which yields the cycloaddition product 134 via a subsequent hydrolysis (Scheme 28). This transformation also demonstrates that Fischer carbene complexes are highly selective in their reactivity toward alkynes in the presence of other multiple bonds (Table 6). [Pg.44]

The [3S+1C] cycloaddition reaction with Fischer carbene complexes is a very unusual reaction pathway. In fact, only one example has been reported. This process involves the insertion of alkyl-derived chromium carbene complexes into the carbon-carbon a-bond of diphenylcyclopropenone to generate cyclobutenone derivatives [41] (Scheme 13). The mechanism of this transformation involves a CO dissociation followed by oxidative addition into the cyclopropenone carbon-carbon a-bond, affording a metalacyclopentenone derivative which undergoes reductive elimination to produce the final cyclobutenone derivatives. [Pg.71]

The thermal benzannulation of Group 6 carbene complexes with alkynes (the Dotz reaction) is highly developed and has been used extensively in synthesis [90,91]. It is thought to proceed through a chromium vinylketene intermediate generated by sequential insertion of the alkyne followed by carbon monoxide into the chromium-carbene-carbon double bond [92]. The realization that photodriven CO insertion into Z-dienylcarbene complexes should generate the same vinylketene intermediate led to the development of a photochemical variant of the Dotz reaction (Table 14). [Pg.178]

Many of the syntheses we have seen within this review depend on the carbonylation of a vinylcarbene complex for the generation of the vinylketene species. The ease of this carbonylation process is controlled, to some degree, by the identity of the metal. The electronic characteristics of the metal will clearly have a great effect on the strength of the metal-carbon double bond, and as such this could be a regulating factor in the carbene-ketene transformation. It is interesting to note the comparative reactivity of a (vinylcarbene)chromium species with its iron analogue The former is a fairly stable species, whereas the latter has been shown to carbonylate readily to form the appropriate (vinylketene)iron complex. [Pg.351]

The starting Fischer-type carbene complexes 1 were obtained by Michael addition of dimethylamine to the carbon-carbon triple bond of the corresponding ethoxy-(phenylethynyl)carbenes. In this regard, de Meijere and co-workers observed that the reactions of several primary and secondary amines with this sort of carbenes, in particular chromium derivatives 3 containing bulky substituents at the terminal carbon of the acetylenic unit, result in formation of the aminoallenylidene derivatives 5 as by-products of the expected Michael adducts 4 (Scheme 2) [20-24]. [Pg.223]

HYDROGENOLYSIS OF CARBON-HALOGEN BONDS WITH CHROMIUM(n)-EN PERCHLORATE NAPHTHALENE FROM 1-BROMONAPHTHALENE... [Pg.32]

Catalysts suitable specifically for reduction of carbon-oxygen bonds are based on oxides of copper, zinc and chromium Adkins catalysts). The so-called copper chromite (which is not necessarily a stoichiometric compound) is prepared by thermal decomposition of ammonium chromate and copper nitrate [50]. Its activity and stability is improved if barium nitrate is added before the thermal decomposition [57]. Similarly prepared zinc chromite is suitable for reductions of unsaturated acids and esters to unsaturated alcohols [52]. These catalysts are used specifically for reduction of carbonyl- and carboxyl-containing compounds to alcohols. Aldehydes and ketones are reduced at 150-200° and 100-150 atm, whereas esters and acids require temperatures up to 300° and pressures up to 350 atm. Because such conditions require special equipment and because all reductions achievable with copper chromite catalysts can be accomplished by hydrides and complex hydrides the use of Adkins catalyst in the laboratory is very limited. [Pg.9]

Studies of the heterolysis reaction for a series of Cr a-hydroxyalkyl complexes established that the presence or absence of a cis-aqua ligand has a negligible effect on the specific rate of the heterolytic decomposition (44,107). Thus it was suggested that the electrophilic attack of a solvent water molecule at the carbon center of the chromium carbon -bond is the rate determining step in the heterolysis process (44,107). [Pg.281]

Another interesting functionalization of carbon-carbon double bonds is the aminochlorination reaction. This transformation has beenknown for a long time [86]. Not only iron but also chromium, palladium and copper compounds can be used [87]. [Pg.85]

Germanium-carbon multiple bonds, formation, 3, 709 Germanium-chalcogen bonds, reactivity, 3, 745 Germanium complexes with alkali metal bonds, 3, 748 with Isis // -arcnc chromium heteroatoms, 5, 340 with chromium carbonyls, 5, 208 coupling reactions, 3, 711 with CpMoCO, 5, 463... [Pg.108]

E. O. Fischer, G. Kreis, C. G. Kreiter, J. Muller, G. Huttner, and H. Lorenz, trans-Halo[alkyl(aryl)carbyne]tetracarbonyl Complexes of Chromium, Molybdenum and Tungsten. A New Complex Type with Transition Metal-Carbon Triple Bond, Angew. Chem. Int. Ed. Engl. 12, 564-565 (1973). [Pg.286]


See other pages where Carbon-chromium bonds is mentioned: [Pg.233]    [Pg.104]    [Pg.233]    [Pg.104]    [Pg.625]    [Pg.41]    [Pg.85]    [Pg.93]    [Pg.28]    [Pg.201]    [Pg.122]    [Pg.376]    [Pg.333]    [Pg.225]    [Pg.153]    [Pg.232]    [Pg.488]    [Pg.57]    [Pg.21]    [Pg.2]    [Pg.5]    [Pg.396]    [Pg.14]    [Pg.64]    [Pg.198]    [Pg.500]    [Pg.550]    [Pg.572]    [Pg.104]    [Pg.245]    [Pg.247]    [Pg.248]    [Pg.250]    [Pg.37]   
See also in sourсe #XX -- [ Pg.318 ]




SEARCH



© 2024 chempedia.info