Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon chemical reactivity

Figure C2.13.7. Change between polymerizing and etching conditions in a fluorocarbon plasma as detennined by tire fluorine-to-carbon ratio of chemically reactive species and tire bias voltage applied to tire substrate surface [36]. Figure C2.13.7. Change between polymerizing and etching conditions in a fluorocarbon plasma as detennined by tire fluorine-to-carbon ratio of chemically reactive species and tire bias voltage applied to tire substrate surface [36].
The reaction of an alcohol with a hydrogen halide is a substitution A halogen usually chlorine or bromine replaces a hydroxyl group as a substituent on carbon Calling the reaction a substitution tells us the relationship between the organic reactant and its prod uct but does not reveal the mechanism In developing a mechanistic picture for a par ticular reaction we combine some basic principles of chemical reactivity with experi mental observations to deduce the most likely sequence of steps... [Pg.153]

The value of alkyl halides as starting materials for the preparation of a variety of organic functional groups has been stressed many times In our earlier discussions we noted that aryl halides are normally much less reactive than alkyl halides m reactions that involve carbon-halogen bond cleavage In the present chapter you will see that aryl halides can exhibit their own patterns of chemical reactivity and that these reac tions are novel useful and mechanistically interesting... [Pg.971]

Historically carbohydrates were once considered to be hydrates of carbon because their molecular formulas m many (but not all) cases correspond to C (H20) j It IS more realistic to define a carbohydrate as a polyhydroxy aldehyde or polyhydroxy ketone a point of view closer to structural reality and more suggestive of chemical reactivity... [Pg.1026]

Isopentenyl pyrophosphate and dimethylallyl pyrophosphate are structurally sim liar—both contain a double bond and a pyrophosphate ester unit—but the chemical reactivity expressed by each is different The principal site of reaction m dimethylallyl pyrophosphate is the carbon that bears the pyrophosphate group Pyrophosphate is a reasonably good leaving group m nucleophilic substitution reactions especially when as in dimethylallyl pyrophosphate it is located at an allylic carbon Isopentenyl pyrophosphate on the other hand does not have its leaving group attached to an allylic carbon and is far less reactive than dimethylallyl pyrophosphate toward nucleophilic reagents The principal site of reaction m isopentenyl pyrophosphate is the carbon-carbon double bond which like the double bonds of simple alkenes is reactive toward electrophiles... [Pg.1087]

One of the most sensitive tests of the dependence of chemical reactivity on the size of the reacting molecules is the comparison of the rates of reaction for compounds which are members of a homologous series with different chain lengths. Studies by Flory and others on the rates of esterification and saponification of esters were the first investigations conducted to clarify the dependence of reactivity on molecular size. The rate constants for these reactions are observed to converge quite rapidly to a constant value which is independent of molecular size, after an initial dependence on molecular size for small molecules. The effect is reminiscent of the discussion on the uniqueness of end groups in connection with Example 1.1. In the esterification of carboxylic acids, for example, the rate constants are different for acetic, propionic, and butyric acids, but constant for carboxyUc acids with 4-18 carbon atoms. This observation on nonpolymeric compounds has been generalized to apply to polymerization reactions as well. The latter are subject to several complications which are not involved in the study of simple model compounds, but when these complications are properly considered, the independence of reactivity on molecular size has been repeatedly verified. [Pg.278]

Substitution of fluorine into an organic molecule results in enhanced chemical stabiUty. The resulting chemical reactivity of adjacent functional groups is drastically altered due to the large inductive effect of fluorine. These effects become more pronounced as the degree of fluorine substitution is increased, especially on the same carbon atom. This effect demonstrates a maximum in fluorocarbons and their derivatives. [Pg.269]

Dead-burned magnesia, characterized by large crystaUite size and very low chemical reactivity, is resistant to the basic slags employed in the metals refining industry. It reacts very slowly with strong acids, and does not readily hydrate or react with carbon dioxide unless finely pulverized. [Pg.353]

Carbon Substituents. Alkyl groups at positions 2 and 4 of a pyridine ring are more reactive than either those at the 3-position of a pyridine ring or those attached to a benzene ring. Carbanions can be formed readily at alkyl carbons attached at the 2- and 4-positions. This increased chemical reactivity has been used to form 2- and 4-(phenylpropyl)pyridines, eg, 4-(3-phenylpropyl)pyridine [2057-49-0] (21) (24). [Pg.326]

Sodium is not found ia the free state ia nature because of its high chemical reactivity. It occurs naturally as a component of many complex minerals and of such simple ones as sodium chloride, sodium carbonate, sodium sulfate, sodium borate, and sodium nitrate. Soluble sodium salts are found ia seawater, mineral spriags, and salt lakes. Principal U.S. commercial deposits of sodium salts are the Great Salt Lake Seades Lake and the rock salt beds of the Gulf Coast, Virginia, New York, and Michigan (see Chemicals frombrine). Sodium-23 is the only naturally occurring isotope. The six artificial radioisotopes (qv) are Hsted ia Table 1 (see Sodium compounds). [Pg.161]

Polypropylene differs from polyethylene in its chemical reactivity because of the presence of tertiary carbon atoms occurring alternately on the chain backbone. Of particular significance is the susceptibility of the polymer to oxidation at elevated temperatures. Some estimate of the difference between the two polymers can be obtained from Figure 1J.7, which compares- the rates of oxygen uptake of eaeh polymer at 93°C. Substantial improvements can be made by the inclusion of antioxidants and such additives are used in all commercial compounds. Whereas polyethylene cross-links on oxidation, polypropylene degrades to form lower molecular weight products. Similar effects are noted... [Pg.257]

The chemical reactivity of these two substituted ethylenes is in agreement with the ideas encompassed by both the MO and resonance descriptions. Enamines, as amino-substituted alkenes are called, are vety reactive toward electrophilic species, and it is the p carbon that is the site of attack. For example, enamines are protonated on the carbon. Acrolein is an electrophilic alkene, as predicted, and the nucleophile attacks the P carbon. [Pg.50]

Flammability (e.g. hydrogen, acetylene, methane), toxicity (e.g. carbon dioxide, fluorine), or chemical reactivity (fluorine, oxygen). [Pg.259]


See other pages where Carbon chemical reactivity is mentioned: [Pg.529]    [Pg.529]    [Pg.168]    [Pg.529]    [Pg.529]    [Pg.168]    [Pg.1960]    [Pg.2396]    [Pg.2424]    [Pg.455]    [Pg.388]    [Pg.172]    [Pg.44]    [Pg.353]    [Pg.9]    [Pg.20]    [Pg.324]    [Pg.248]    [Pg.43]    [Pg.133]    [Pg.47]    [Pg.41]    [Pg.41]    [Pg.69]    [Pg.86]    [Pg.8]    [Pg.11]    [Pg.47]    [Pg.6]    [Pg.13]    [Pg.23]    [Pg.42]    [Pg.45]    [Pg.51]    [Pg.59]    [Pg.59]    [Pg.60]    [Pg.87]    [Pg.99]    [Pg.105]    [Pg.123]   
See also in sourсe #XX -- [ Pg.217 ]




SEARCH



Carbon reactive

Carbon reactivity

Carbonate, chemical

© 2024 chempedia.info