Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon bonding physical properties

When two different substituents are attached to each carbon atom of the double bond, cis-trans isomers can exist. In the case of c T-2-butene (Fig. 1.11a), both methyl groups are on the same side of the double bond. The other isomer has the methyl groups on opposite sides and is designated as rran5--2-butene (Fig. l.llb). Their physical properties are quite different. Geometric isomerism can also exist in ring systems examples were cited in the previous discussion on conformational isomers. [Pg.43]

Substitution of fluorine for hydrogen in an organic compound has a profound influence on the compound s chemical and physical properties. Several factors that are characteristic of fluorine and that underHe the observed effects are the large electronegativity of fluorine, its small size, the low degree of polarizabiHty of the carbon—fluorine bond and the weak intermolecular forces. These effects are illustrated by the comparisons of properties of fluorocarbons to chlorocarbons and hydrocarbons in Tables 1 and 2. [Pg.266]

Electronic-Grade MMCs. Metal-matrix composites can be tailored to have optimal thermal and physical properties to meet requirements of electronic packaging systems, eg, cotes, substrates, carriers, and housings. A controUed thermal expansion space tmss, ie, one having a high precision dimensional tolerance in space environment, was developed from a carbon fiber (pitch-based)/Al composite. Continuous boron fiber-reinforced aluminum composites made by diffusion bonding have been used as heat sinks in chip carrier multilayer boards. [Pg.204]

When additional substituents ate bonded to other ahcycHc carbons, geometric isomers result. Table 2 fists primary (1°), secondary (2°), and tertiary (3°) amine derivatives of cyclohexane and includes CAS Registry Numbers for cis and trans isomers of the 2-, 3-, and 4-methylcyclohexylamines in addition to identification of the isomer mixtures usually sold commercially. For the 1,2- and 1,3-isomers, the racemic mixture of optical isomers is specified ultimate identification by CAS Registry Number is fisted for the (+) and (—) enantiomers of /n t-2-methylcyclohexylamine. The 1,4-isomer has a plane of symmetry and hence no chiral centers and no stereoisomers. The methylcyclohexylamine geometric isomers have different physical properties and are interconvertible by dehydrogenation—hydrogenation through the imine. [Pg.206]

Physical Properties. The physical properties of organosilanes are determined largely by the properties of the sihcon atom (Table 2). Because sihcon is larger and less electronegative than either carbon or hydrogen, the polarity of the Si—H bond is opposite to that of the C—H bond (Table 3). This... [Pg.24]

Table 3. Physical Properties of Carbon and Silicon and Their Bonds to Hydrogen ... Table 3. Physical Properties of Carbon and Silicon and Their Bonds to Hydrogen ...
The fatty acids obtained from the process can be used directly or further manipulated for improved or modified performance and stabiUty. Hardening is an operation in which some fraction of the unsaturated bonds present in the fatty acids are eliminated through hydrogenation or the addition of H2 across a carbon—carbon double bond. This process was initially intended to improve the odor and color stabiUty of fatty acids through elimination of the polyunsaturated species. However, with the growth in the use of specialty fatty acids, hydrogenation is a commercially important process to modify the physical properties of the fatty acids. [Pg.155]

Vulcanization changes the physical properties of rubbers. It increases viscosity, hardness, modulus, tensile strength, abrasion resistance, and decreases elongation at break, compression set and solubility in solvents. All those changes, except tensile strength, are proportional to the degree of cross-linking (number of crosslinks) in the rubber network. On the other hand, rubbers differ in their ease of vulcanization. Since cross-links form next to carbon-carbon double bonds. [Pg.638]

Alkane Hydrocarbon containing only single carbon-carbon bonds. The simplest example is methane, CK, 580 cis-trans isomer in, 598 isomers in, 580-582 nomenclature, 582t physical properties, 591t sources, 583-585 structural isomerism, 597 tests for, 602 uses, 583-585... [Pg.681]

Nearly all of the polymers produced by step-growth polymerization contain heteroatoms and/or aromatic rings in the backbone. One exception is polymers produced from acyclic diene metathesis (ADMET) polymerization.22 Hydrocarbon polymers with carbon-carbon double bonds are readily produced using ADMET polymerization techniques. Polyesters, polycarbonates, polyamides, and polyurethanes can be produced from aliphatic monomers with appropriate functional groups (Fig. 1.1). In these aliphatic polymers, the concentration of the linking groups (ester, carbonate, amide, or urethane) in the backbone greatly influences the physical properties. [Pg.4]

D-TEM gave 3D images of nano-filler dispersion in NR, which clearly indicated aggregates and agglomerates of carbon black leading to a kind of network structure in NR vulcanizates. That is, filled rubbers may have double networks, one of rubber by covalent bonding and the other of nanofiller by physical interaction. The revealed 3D network structure was in conformity with many physical properties, e.g., percolation behavior of electron conductivity. [Pg.544]

The subjects of structure and bonding in metal isocyanide complexes have been discussed before 90, 156) and will not be treated extensively here. A brief discussion of this subject is presented in Section II of course, special emphasis is given to the more recent information which has appeared. Several areas of current study in the field of transition metal-isocyanide complexes have become particularly important and are discussed in this review in Section III. These include the additions of protonic compounds to coordinated isocyanides, probably the subject most actively being studied at this time insertion reactions into metal-carbon bonded species nucleophilic reactions with metal isocyanide complexes and the metal-catalyzed a-addition reactions. Concurrent with these new developments, there has been a general expansion of descriptive chemistry of isocyanide-metal complexes, and further study of the physical properties of selected species. These developments are summarized in Section IV. [Pg.22]

A thiol contains an —SH group covalently bonded to carbon. Sulfur is just below oxygen in the periodic table, so a thiol is somewhat similar to an alcohol. Still, the chemical and physical properties of thiols differ significantly from those of alcohols. For example, whereas alcohols have inoffensive odors, thiols smell bad. The stench of skunk scent is due to thiols, including 3-methylbutanethiol. Thiols are important in proteins because of their abilities to form S—S linkages, which we describe in Section 13-1. [Pg.891]


See other pages where Carbon bonding physical properties is mentioned: [Pg.760]    [Pg.2399]    [Pg.2702]    [Pg.271]    [Pg.40]    [Pg.283]    [Pg.289]    [Pg.273]    [Pg.118]    [Pg.218]    [Pg.309]    [Pg.25]    [Pg.54]    [Pg.79]    [Pg.342]    [Pg.534]    [Pg.555]    [Pg.6]    [Pg.159]    [Pg.979]    [Pg.1106]    [Pg.271]    [Pg.56]    [Pg.830]    [Pg.559]    [Pg.368]    [Pg.322]    [Pg.232]    [Pg.162]    [Pg.469]    [Pg.313]    [Pg.1048]   
See also in sourсe #XX -- [ Pg.193 ]




SEARCH



Bond property

Bonding properties

Carbon bonding properties

Carbon physical properties

Carbon properties

Carbonates physical properties

Carbonates properties

Physical carbonate

Physical carbons

© 2024 chempedia.info