Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon anode reaction

The electrolytic decomposition of alumina yields oxygen which reacts with the carbon anode for an overall cell reaction ... [Pg.175]

Fused-salt electrolysis of K2NbFy is not an economically feasible process because of the low current efficiency (31). However, electrowinning has been used to obtain niobium from molten alkaU haUde electrolytes (32). The oxide is dissolved in molten alkaU haUde and is deposited in a molten metal cathode, either cadmium or zinc. The reaction is carried out in a ceramic or glass container using a carbon anode the niobium alloys with the cathode metal, from which it is freed by vacuum distillation, and the niobium powder is left behind. [Pg.23]

The cathodic reaction is the reduction of iodine to form lithium iodide at the carbon collector sites as lithium ions diffuse to the reaction site. The anode reaction is lithium ion formation and diffusion through the thin lithium iodide electrolyte layer. If the anode is cormgated and coated with PVP prior to adding the cathode fluid, the impedance of the cell is lower and remains at a low level until late in the discharge. The cell eventually fails because of high resistance, even though the drain rate is low. [Pg.535]

Graphite has an electron conductivity of about 200 to 700 d cm is relatively cheap, and forms gaseous anodic reaction products. The material is, however, mechanically weak and can only be loaded by low current densities for economical material consumption. Material consumption for graphite anodes initially decreases with increased loading [4, 5] and in soil amounts to about 1 to 1.5 kg A a at current densities of 20 A m (see Fig. 7-1). The consumption of graphite is less in seawater than in fresh water or brackish water because in this case the graphite carbon does not react with oxygen as in Eq. (7-1),... [Pg.210]

In acid electrolytes, carbon is a poor electrocatalyst for oxygen evolution at potentials where carbon corrosion occurs. However, in alkaline electrolytes carbon is sufficiently electrocatalytically active for oxygen evolution to occur simultaneously with carbon corrosion at potentials corresponding to charge conditions for a bifunctional air electrode in metal/air batteries. In this situation, oxygen evolution is the dominant anodic reaction, thus complicating the measurement of carbon corrosion. Ross and co-workers [30] developed experimental techniques to overcome this difficulty. Their results with acetylene black in 30 wt% KOH showed that substantial amounts of CO in addition to C02 (carbonate species) and 02, are... [Pg.238]

In general, lithium-ion batteries are assembled in the discharged state. That is, the cathode, for example LqCoC, is filly intercalated by lithium, while the anode (carbon) is completely empty (not charged by lithium). In the first charge the anode is polarized in the negative direction (electrons are inserted into the carbon) and lithium cations leave the cathode, enter the solution, and are inserted into the carbon anode. This first charge process is very complex. On the basis of many reports it is presented schematically [6, 74, 76] in Fig. 5. The reactions presented in Fig. 5 are also discussed in Sec. 6.2.1, 6.2.2 and 6.3.5. [Pg.432]

The SEI is formed by parallel and competing reduction reactions and its composition thus depends on i0, t], and the concentrations of each of the electroactive materials. For carbon anodes, (0 also depends on the surface properties of the electrode (ash content, surface chemistry, and surface morphology). Thus, SEI composition on the basal plane is different from that on the cross—section planes. [Pg.452]

The reaction conditions, normally applied, are those described in chap. 2 for the radical pathway. These are a platinum anode, high current densities, no additives and a slightly acidic medium. However, the dimerizations shown in Table 2, No. 2, also gave in some cases good yields at a carbon anode in acetonitrile-water [52] or at a baked carbon anode in methanol [48]. With propionic and butyric acid an unusually high portion of alkene is formed at the cost of the dimer. [Pg.101]

Electrolytic aluminum production is the most important process in both volume and significance. World production is about 15 megatons per year, consuming about 240 billion kilowatthours of electrical energy. Aluminum oxide (alumina), AI2O3, is subjected to electrolysis at a temperature of 950°C to this end it is dissolved in molten cryolite NujAlFg, with which it forms a eutectic melting at about 940°C. Carbon anodes that are anodically oxidized to CO2 in the process are employed. The overall electrolysis reaction can be written as... [Pg.324]

It has been found that when molybdenum carbide (Mo2C) is used as the soluble anode, a loose carbon crust forms on the surface of the pellets as the dissolution of molybdenum progresses. X-ray diffraction analysis of the spent anode has indicated a predominance of the Mo2C phase. This suggests that the anodic reaction proceeds as... [Pg.722]

The Li-Ion system was developed to eliminate problems of lithium metal deposition. On charge, lithium metal electrodes deposit moss-like or dendrite-like metallic lithium on the surface of the metal anode. Once such metallic lithium is deposited, the battery is vulnerable to internal shorting, which may cause dangerous thermal run away. The use of carbonaceous material as the anode active material can completely prevent such dangerous phenomenon. Carbon materials can intercalate lithium into their structure (up to LiCe). The intercalation reaction is very reversible and the intercalated carbons have a potential about 50mV from the lithium metal potential. As a result, no lithium metal is found in the Li-Ion cell. The electrochemical reactions at the surface insert the lithium atoms formed at the electrode surface directly into the carbon anode matrix (Li insertion). There is no lithium metal, only lithium ions in the cell (this is the reason why Li-Ion batteries are named). Therefore, carbonaceous material is the key material for Li-Ion batteries. Carbonaceous anode materials are the key to their ever-increasing capacity. No other proposed anode material has proven to perform as well. The carbon materials have demonstrated lower initial irreversible capacities, higher cycle-ability and faster mobility of Li in the solid phase. [Pg.179]

Suda and coworkers described the anodic oxidation of 2-silyl-l,3-dithianes which have two sulfur atoms on the carbon adjacent to silicon [42], In this case, however, the C Si bond is not cleaved, but the C-S bonds are cleaved to give the corresponding acylsilanes (Scheme 12). Although the detailed mechanism has not been clarified as yet, the difference in the anode material seems to be responsible for the different pathway of the reaction. In fact, a platinum plate anode is used in this reaction, although a carbon anode is usually used for the oxidative cleavage of the C-Si bond. In the anodic oxidation of 2-silyl-l,3-dithianes the use of a carbon anode results in a significant decrease in the yield of acylsilanes. The effects of the nature of the solvent and the supporting electrolyte may also be important for the fate of the initially formed cation radical intermediate. Since various 2-alkyl-2-silyl-l,3-dithianes can be readily synthesized, this reaction provides a convenient route to acylsilanes. [Pg.67]

The first coupling reaction of this type studied utilized a 3-methoxyphenyl ring as the aryl coupling partner (Scheme 36) [47a, c]. The reaction employed constant current electrolysis conditions and a reticulated vitreous carbon anode (RVC). A good yield of cyclized material was obtained. However, the reaction was plagued by the formation of secondary products derived from over-oxidation (35 and 36) of the initially formed cyclization products (33 and 34). The amount of over-oxidized material could be greatly reduced with the use of controlled potential electrolysis conditions. [Pg.74]

Anodic oxidation of JV,iV-disubstituted trifluoroethanimidamide 45 in dry and in aqueous acetonitrile gave the imidazole 46 and quinoneimine 47 as the reaction products (Scheme 24). The constant current electrolysis on a glassy carbon anode and a platinum cathode was performed in an undivided cell [74]. [Pg.112]

The reaction of H2 and O2 produces H2O. When a carbon-containing fuel is involved in the anode reaction, CO2 is also produced. For MCFCs, CO2 is required in the cathode reaction to maintain an invariant carbonate concentration in the electrolyte. Because CO2 is produced at the anode and consumed at the cathode in MCFCs, and because the concentrations in the anode and cathode feed streams are not necessarily equal, the Nemst equation in Table 2-2 includes the CO2 partial pressure for both electrode reactions. [Pg.55]

Intermolecular coupling of a vinyl ether with styrene at a carbon anode in methanol is successful, giving a mixture of the cross coupled product and the two homocoupled products [49], Intramolecular coupling between an enol ether and an alkene centre, as in 24 and 25, proceeds to give the cyclized product in good yield [50], Five and six membered rings can be constructed in this way. An easily oxidised vinyl ether group is necessary to initiate the reaction and the second alkene... [Pg.41]

Anodic oxidation of dialkyl ethers in methanol results in the formation of acetals [62]. Reaction is best carried out at a platinum, rather dian carbon, anode in methanol containing 10 % acetic acid with tetraethylammonium fhioroborate as... [Pg.273]

Among the chelates active for the reduction of oxygen mentioned in Section 4.1, there is only one compound capable of catalyzing anodic reactions too. This is CoTAA, which, as Table 7 shows, is very active in acid solutions for the reaction of formic acid, oxalic acid and hydrazine, but less active for the reaction of formaldehyde and carbon monoxide 10>. [Pg.165]


See other pages where Carbon anode reaction is mentioned: [Pg.348]    [Pg.428]    [Pg.219]    [Pg.186]    [Pg.187]    [Pg.385]    [Pg.525]    [Pg.197]    [Pg.102]    [Pg.325]    [Pg.721]    [Pg.722]    [Pg.187]    [Pg.357]    [Pg.670]    [Pg.348]    [Pg.75]    [Pg.484]    [Pg.53]    [Pg.59]    [Pg.293]    [Pg.356]    [Pg.88]    [Pg.26]    [Pg.42]    [Pg.114]    [Pg.115]    [Pg.199]    [Pg.198]    [Pg.278]    [Pg.143]   
See also in sourсe #XX -- [ Pg.52 ]




SEARCH



Anode carbon electrolytic reactions

Anode reactions

Anodic reactions

Carbon anodes

© 2024 chempedia.info