Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbon alloying element

For example,copper has relatively good corrosion resistance under non-oxidizing conditions. It can be alloyed with zinc to yield a stronger material (brass), but with lowered corrosion resistance. Flowever, by alloying copper with a passivating metal such as nickel, both mechanical and corrosion properties are improved. Another important alloy is steel, which is an alloy between iron (>50%) and other alloying elements such as carbon. [Pg.923]

Plain Carbon and Low Alloy Steels. For the purposes herein plain carbon and low alloy steels include those containing up to 10% chromium and 1.5% molybdenum, plus small amounts of other alloying elements. These steels are generally cheaper and easier to fabricate than the more highly alloyed steels, and are the most widely used class of alloys within their serviceable temperature range. Figure 7 shows relaxation strengths of these steels and some nickel-base alloys at elevated temperatures (34). [Pg.117]

When a component at an austenitizing temperature is placed in a quenchant, eg, water or oil, the surface cools faster than the center. The formation of martensite is more favored for the surface. A main function of alloying elements, eg, Ni, Cr, and Mo, in steels is to retard the rate of decomposition of austenite to the relatively soft products. Whereas use of less expensive plain carbon steels is preferred, alloy steels may be requited for deep hardening. [Pg.211]

Heat Treatment of Steel. Steels are alloys having up to about 2% carbon in iron plus other alloying elements. The vast application of steels is mainly owing to their ability to be heat treated to produce a wide spectmm of properties. This occurs because of a crystallographic or aHotropic transformation which takes place upon quenching. This transformation and its role in heat treatment can be explained by the crystal stmcture of iron and by the appropriate phase diagram for steels (see Steel). [Pg.236]

Steels having adequate hardenabiHty develop martensitic stmctures in practical section sizes. Molybdenum is a potent contributor to hardenabiHty, and has been shown to be even more effective in the presence of carehiUy selected amounts of other alloying elements (26). The end-quench test has become the accepted method for measuring hardenabiHty, and the data can be correlated with section size. Technical societies worldwide have standardized hardenabiHty limits (bands) for a large number of carbon and alloy steels standards of the Society of Automotive Engineers are examples (27). [Pg.467]

The durabihty and versatility of steel are shown by its wide range of mechanical and physical properties. By the proper choice of carbon content and alloying elements, and by suitable heat treatment, steel can be made so soft and ductile that it can be cold-drawn into complex shapes such as automobile bodies. Conversely, steel can be made extremely hard for wear resistance, or tough enough to withstand enormous loads and shock without deforming or breaking. In addition, some steels are made to resist heat and corrosion by the atmosphere and by a wide variety of chemicals. [Pg.373]

Alloying elements either enlarge the austenite field or reduce it. The former include manganese, nickel, cobalt, copper, carbon, and nitrogen and are referred to as austenite stabilizers. [Pg.386]

Alloying elements such as nickel, chromium, molybdenum, and copper, which may be introduced with scrap, can increase the hardenability, although only slightly, because the concentrations are ordinarily low. However, the heat-treating characteristics may change, and for appHcations in which ductihty is important, as in low carbon steels for deep drawing, the increased hardness and lower ductiHty imparted by these elements may be harmful. [Pg.396]

For slightly less than 10% of products, alloying elements are introduced to produce properties not available for carbon steels where the functional elements are usually considered to be carbon, siHcon (to 0.6%), and manganese (to 1.65%). Copper, which may be present up to 0.6 wt %, is relatively rare compared to the ubiquitous siHcon and manganese. [Pg.396]

An important item in this array of matenals is the class known as maraging steels. This group of high nickel martensitic steels contain so Htde carbon that they are often referred to as carbon-free iron—nickel martensites (54). Carbon-free iron—nickel martensite with certain alloying elements is relatively soft and ductile and becomes hard, strong, and tough when subjected to an aging treatment at around 480°C. [Pg.400]

Mechanical properties depend on the alloying elements. Addition of carbon to the cobalt base metal is the most effective. The carbon forms various carbide phases with the cobalt and the other alloying elements (see Carbides). The presence of carbide particles is controlled in part by such alloying elements such as chromium, nickel, titanium, manganese, tungsten, and molybdenum that are added during melting. The distribution of the carbide particles is controlled by heat treatment of the solidified alloy. [Pg.372]

The addition of small amounts of alloying materials greatly improves corrosion resistance to atmospheric environments but does not have much effect against liquid corrosives. The alloying elements produce a tight, dense adherent rust film, but in acid or alkaline solutions corrosion is about equivalent to that of carbon steel. However, the greater strength permits thinner walls in process equipment made from low-alloy steel. [Pg.2443]

As you can see from the tables in Chapter 1, few metals are used in their pure state -they nearly always have other elements added to them which turn them into alloys and give them better mechanical properties. The alloying elements will always dissolve in the basic metal to form solid solutions, although the solubility can vary between <0.01% and 100% depending on the combinations of elements we choose. As examples, the iron in a carbon steel can only dissolve 0.007% carbon at room temperature the copper in brass can dissolve more than 30% zinc and the copper-nickel system - the basis of the monels and the cupronickels - has complete solid solubility. [Pg.16]

Carbon is the cheapest and most effective alloying element for hardening iron. We have already seen in Chapter 1 (Table 1.1) that carbon is added to iron in quantities ranging from 0.04 to 4 wt% to make low, medium and high carbon steels, and cast iron. The mechanical properties are strongly dependent on both the carbon content and on the type of heat treatment. Steels and cast iron can therefore be used in a very wide range of applications (see Table 1.1). [Pg.113]

Low-carbon, low-alloy steels are in widespread use for fabrication-welded and forged-pressure vessels. The carbon content of these steels is usually below 0.2%, and the alloying elements that do not exceed 12% are nickel, chromium, molybdenum, vanadium, boron and copper. The principal applications of these steels are given in Table 3.8. [Pg.64]

Steel is essentially iron with a small amount of carbon. Additional elements are present in small quantities. Contaminants such as sulfur and phosphorus are tolerated at varying levels, depending on the use to which the steel is to be put. Since they are present in the raw material from which the steel is made it is not economic to remove them. Alloying elements such as manganese, silicon, nickel, chromium, molybdenum and vanadium are present at specified levels to improve physical properties such as toughness or corrosion resistance. [Pg.905]

Cast irons are iron with high levels of carbon. Heat treatments and alloying element additions produce gray cast iron, malleable iron, ductile iron, spheroidal cast iron and other grades. The mechanical properties vary significantly. Nickel-containing cast irons have improved hardness and corrosion resistance. Copper or molybdenum additions improve strength. [Pg.905]

The effects of some alloying elements on relative behaviour in an industrial atmosphere (Sheffield, U.K.) are shown in Table 3.21A. For comparison, data for simultaneous tests on carbon steel and some non-ferrous material are given. Results are as weight loss over a five-year period and data from... [Pg.542]


See other pages where Carbon alloying element is mentioned: [Pg.222]    [Pg.346]    [Pg.443]    [Pg.117]    [Pg.411]    [Pg.496]    [Pg.211]    [Pg.214]    [Pg.466]    [Pg.7]    [Pg.384]    [Pg.386]    [Pg.390]    [Pg.394]    [Pg.101]    [Pg.198]    [Pg.216]    [Pg.369]    [Pg.186]    [Pg.17]    [Pg.138]    [Pg.59]    [Pg.258]    [Pg.292]    [Pg.770]    [Pg.904]    [Pg.548]    [Pg.619]    [Pg.761]    [Pg.975]    [Pg.978]    [Pg.1011]   


SEARCH



Alloying elements

Carbon alloying

Carbon alloys

Carbon an Alloying Element

Carbon element

Carbon elemental

Carbon steel alloying elements

Carbonate carbon, elemental

© 2024 chempedia.info