Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Trityl carbocations

Carbocations Trityl, lC(aryl)3l, Salts and Salts of other Carbocations... [Pg.1420]

When using a cation source in conjunction with a Friedel-Crafts acid the concentration of growing centers is most often difficult to measure and remains unknown. By the use of stable carbocation salts (for instance trityl and tropyhum hexachloroantimonate) the uncertainty of the concentration of initiating cations is eliminated. Due to the highly reproducible rates, stable carbocation salts have been used in kinetic studies. Their use, however, is limited to cationicaHy fairly reactive monomers (eg, A/-vinylcarbazole, -methoxystyrene, alkyl vinyl ethers) since they are too stable and therefore ineffective initiators of less reactive monomers, such as isobutylene, styrene, and dienes. [Pg.245]

Thus for hydrolysis in 50% aqueous acetone, a mixed second and first order rate equation is observed for phenylchloromethane (benzyl chloride, 10)—moving over almost completely to the SV1 mode in water alone. Diphenylchloromethane (11) is found to follow a first order rate equation, with a very large increase in total rate, while with triphenylchloromethane (trityl chloride, 12) the ionisation is so pronounced that the compound exhibits electrical conductivity when dissolved in liquid S02. The main reason for the greater promotion of ionisation—with consequent earlier changeover to the SW1 pathway in this series—is the considerable stabilisation of the carbocation, by delocalisation of its positive charge, that is now possible ... [Pg.84]

Organosilicon hydride reductions of preformed stable carbocations such as triphenylmethyl (trityl) tetrafluoroborate and hexafluoroantimonate salts are rapid... [Pg.8]

Because of the high stability of the triphenylmethyl carbocation, the reductive ether cleavage of trityl ethers with EtySiH/trimethylsilyl triflate (TMSOTf) is highly successful. This reaction even occurs in the presence of highly reactive sugar ketals, leaving the ketals intact (Eq. 126).269... [Pg.50]

The initiation of the cationic polymerisation of alkenes is examined in detail by means of simple thermodynamic concepts. From a consideration of the kinetic requirements it is shown that the ideal initiator will yield a stable, singly charged anion and a cation with a high reactivity towards the monomer by simple, well defined reactions. It must also be adequately soluble in the solvent of choice and for the experimental method to be used. The calculations are applied to carbocation salts as initiators and a method of predicting their relative solubilities is described. From established and predicted data for a variety of carbocation salts the position of their ion molecule equilibria and their reactivity towards alkenes are examined by means of Born-Haber cycles. This treatment established the relative stabilities of a number of anions and the reason for dityl, but not trityl salts initiating the polymerisation of isobutene. [Pg.189]

The value of 0.05 M from equation (7) is consistent with values of A as < 1 and ( /fes) < 1 for reactions in water. For example, = 0.3 gives (Jdjki ) = 0.17 for the relative rate constants for addition of solvent to the carbocation-anion pair and free carbocation. By comparison, the three-fold smaller rate constant for addition of water to an intramolecular trityl carbocation-sulfonate ion pair compared with addition to the analogous substituted trityl carbocation o-sulfonyl methyl ester has been used to estimate a value of (kjk ) = 0.33. " ... [Pg.319]

Quinn et al. followed the reaction of a nucleoside with trityl chloride in pyridine at 50 °C on the laboratory scale. This reaction is the first step of an industrially significant process. The UV-vis spectra were analyzed with chemometric analysis where automatic window factor analysis (WFA) yielded better results than PLS. A reactive intermediate, a solvated carbocation, was identified that had not been found with HPLC (quenching upon aliquot dilution) or NIR, respectively. Small, sudden process upsets could be detected. [Pg.95]

Similarly, trityl cation in aromatic hydrocarbons initiates the fragmentation of simple tetraalkyl plumbanes and stannanes yielding the plumbyl or stannyl cationic species, e.g. 11, and alkenes. The reaction is thought to proceed via plumbyl-or stannyl-substituted carbocations 12, which in a second step eliminate the al-kene. This approach was used in the synthesis of norbornyl cations of the elements tin and lead, e.g. 13, (Scheme 5). ... [Pg.159]

One of the most stable carbocation structures is the employing all three rings. Trityl chloride ionizes read-triphenylmethyl cation (trityl cation). In this struc- ily, and can capture an available nucleophile, ture, the positive charge is stabilized by resonance... [Pg.194]

During the past decades, the scope of Lewis acid catalysts was expanded with several organic salts. The adjustment of optimal counter anion is of significant importance, while it predetermines the nature and intensity of catalytic Lewis acid activation of the reactive species. Discovered over 100 years ago and diversely spectroscopically and computationally investigated [131-133], carbocations stiU remain seldom represented in organocatalysis, contrary to analogous of silyl salts for example. The first reported application of a carbenium salt introduced the trityl perchlorate 51 (Scheme 49) as a catalyst in the Mukaiyama aldol-type reactions and Michael transformations (Scheme 50) [134-142]. [Pg.372]

The utilization of compound 54 in the aldolization showed higher yield of the product (92%) after 30 min, compared to that (73%) of a trityl catalyzed reaction. The similar results were obtained in the glycosylation reaction 85% (o/p ratio 9 91) and 72% (cx/p ratio 10 90) respectively. The application of the highly hindered tetrakis[pentafluorophenyl]borate anion is remarkably advantageous for the stabilization of the positive charge in the carbocation 54 and at the same time promotion of its accessibility to the interaction with a carbonyl species. [Pg.376]

Tertiary electrophiles alkylate bydroxylamines through the SatI mechanism. These reactions (e.g. equation 10) are practically feasible only for compounds forming highly stabilized carbocations such as trityl , or 2-(p-alkoxyphenyl)propyl. All these reactions proceed exclusively on the nitrogen atom and have been used for A-protection of the amino groups in bydroxylamines. [Pg.122]

Polymerizations initiated by ionizing radiation or stable carbocation salts such as trityl or tropylium hexachloroantimonate are useful for evaluating the free-ion propagation rate constant. Ionizing radiation yields free ions (in the absence of ion pairs) whose concentrations... [Pg.395]

The initiation with some carbocations, especially trityl, does not involve direct addition to monomer. The carbocation abstracts a hydride ion from the a-carbon of monomer and the newly formed carbocation initiates polymerization [Afsar-Taromi et al., 1978 Kuntz, 1967]. This hydride ion abstraction is so facile with 1,3-dioxolane that it is used to preform stable l,3-dioxolan-2-ylium salts (XII) that can be used subsequently as initiators [Jedlinski et al., 1985],... [Pg.556]

The scope and limitations of the Lewis acid-catalyzed additions of alkyl chlorides to carbon-carbon double bonds were studied.51 Since Lewis acid systems are well-known initiators in carbocationic polymerizations of alkenes, the question arises as to what factors govern the two transformations. The prediction was that alkylation products are expected if the starting halides dissociate more rapidly than the addition products.55 In other words, addition is expected if the initial carbocation is better stabilized than the one formed from the dissociation of the addition product. This has been verified for the alkylation of a range of alkyl-and aryl-substituted alkenes and dienes with alkyl and aralkyl halides. Steric effects, however, must also be taken into account in certain cases, such as in the reactions of trityl chloride.51... [Pg.227]

Preformed or in situ-prepared carbocation salts (tropylium, trityl, etc.) are also active in transforming alkenes to carbocations.119,138,140 Preformed carbocation salts are the simplest initiators in cationic polymerization and ideal if the cation is identical to the one derived from the momomer (e.g., fert-butyl cation in the polymerization of isobutylene). [Pg.737]

Polystyrene-bound allylic or benzylic alcohols react smoothly with hydrogen chloride or hydrogen bromide to yield the corresponding halides. The more stable the intermediate carbocation, the more easily the solvolysis will proceed. Alternatively, thionyl chloride can be used to convert benzyl alcohols into chlorides [7,25,26]. A milder alternative for preparing bromides or iodides, which is also suitable for non-benzylic alcohols, is the treatment of alcohols with phosphines and halogens or the preformed adducts thereof (Table 6.2, Experimental Procedure 6.1 [27-31]). Benzhy-dryl and trityl alcohols bound to cross-linked or non-cross-linked polystyrene are particularly prone to solvolysis, and can be converted into the corresponding chlorides by treatment with acetyl chloride in toluene or similar solvents (Table 6.2 [32-35]). [Pg.208]

Arnett and Hofelich measured heats of reaction of a variety of alcohols with SbF5/FS03H in sulfuryl chloride fluoride to form their respective carbocations at constant temperature (-40 °C). In this superacid medium there were no ion-pair complications126 and hence reliable calorimetric data were obtained for various cyclopropyl and phenyl substituted cations. The heats of reaction for the formation of tricyclopropylcarbinyl cation (-59.2 kcalmol ), trityl cation (-49.0 kcalmol1) and ferr-butyl cation (-35.5 kcalmol1) show that the relative order of the stabilization of the cationic center is cyclopropyl >... [Pg.854]

Advantage has been taken of the ready accessibility of eleven para-substituted trityl and 9-phenylxanthyl cations, radicals, and carbanions in a study of the quantitative relationship between their stabilities under similar conditions.2 Hammett-type correlations have also been demonstrated for each series. Heats and free energies of deprotonation and the first and second oxidation potentials of the resulting carbanions were compared. The first and second reduction potentials and the p/CR values of the cations in aqueous sulfuric acid were compared, as were calorimetric heats of hydride transfer from cyanoborohydride ion. For radicals, consistent results were obtained for bond dissociation energies derived, alternatively, from the carbocation and its reduction potential or from the carbanion and its oxidation potential. [Pg.327]

In practice, extrapolations of p fR in water have usually used the older acidity function based method, for example, for trityl,61,62 benzhydryl,63 or cyclopropenyl (6) cations.66,67 These older data include studies of protonation of aromatic molecules, such as pKSi = —1.70 for the azulenium ion 3,59 and Kresge s extensive measurements of the protonation of hydroxy- and methoxy-substituted benzenes.68 Some of these data have been replotted as p fR or pKa against XQ with only minor changes in values.25,52 However, for more unstable carbocations such as 2,4,6-trimethylbenzyl, there is a long extrapolation from concentrated acid solutions to water and the discrepancy is greater use of an acidity function in this case gives pA 2° = —17.5,61 compared with —16.3 (and m = 1.8) based on X0. Indeed because of limitations to the acidity of concentrated solutions of perchloric or sulfuric acid pICs of more weakly nucleophilic carbocations are not accessible from equilibrium measurements in these media. [Pg.30]

Choride ion is considerably less reactive than the azide ion. Thus, although values of kc 1/ kn2o have been quite widely available from mass law effects of chloride ion on the solvolysis of aralkyl halides, normally the reaction of the chloride ion cannot be assumed to be diffusion controlled and the value of kn2o cannot be inferred, except for relatively unstable carbocations (p. 72). Mayr and coworkers251 have measured rate constants for reaction of chloride ion with benzhydryl cations in 80% aqueous acetonitrile and their values of logk are plotted together with a value for the trityl cation19 in Fig. 7. There is some scatter in the points, possibly because of some steric hindrance to reaction of the trityl cations. However, it can be seen that chloride ion is more... [Pg.91]

The dilemma presented by these conflicting results was resolved by TaShma and Rappoport.265 They pointed out that the apparent dependence of kAz/ knl0 upon the reactivity of the carbocation arose because even the most stable cation reacting with azide ion did so at the limit of diffusion control. Thus while kn2o remained dependent on the stability of the cation in the manner illustrated in Fig. 7 the rate constant for the azide ion remained unchanged. Thus the most stable cation formed in the solvolysis reactions was the trityl ion, for which direct measurements of kn2o = 1 -5 x 105 s 1 and kAz = 4.1 x 109 now show that even for this ion the reaction with azide ion is diffusion controlled.22... [Pg.96]

The interpretation of reactivities here provides a particular challenge, because differences in solvation and bond energies contribute differently to reaction rates and equilibria. Analysis in terms of the Marcus equation, in which effects on reactivity arising from changes in intrinsic barrier and equilibrium constant can be separated, is an undoubted advantage. Only rather recently, however, have equilibrium constants, essential to a Marcus analysis, become available for reactions of halide ions with relatively stable carbocations, such as the trityl cation, the bis-trifluoromethyl quinone methide (49), and the rather less stable benzhydryl cations.19,219... [Pg.110]

It seems clear that for reactions of carbocations with nucleophiles or bases in which the structure of the carbocation is varied, we can expect compensating changes in intrinsic barrier and thermodynamic driving force to lead to relationships between rate and equilibrium constants which have the form of extended linear plots of log k against log K. However, this will be strictly true only for structurally homogeneous groups of cations. There is ample evidence that for wider structural variations, for example, between benzyl, benzhydryl, and trityl cations, there are variations in intrinsic barrier particularly reflecting steric effects which lead to dispersion between families of cations. [Pg.112]

Because systematic variations in selectivity with reactivity are commonly quite mild for reactions of carbocations with n-nucleophiles, and practically absent for 71-nucleophiles or hydride donors, many nucleophiles can be characterized by constant N and s values. These are valuable in correlating and predicting reactivities toward benzhydryl cations, a wide structural variety of other electrophiles and, to a good approximation, substrates reacting by an Sn2 mechanism. There are certainly failures in extending these relationships to too wide a variation of carbocation and nucleophile structures, but there is a sufficient framework of regular behavior for the influence of additional factors such as steric effects to be rationally examined as deviations from the norm. Thus comparisons between benzhydryl and trityl cations reveal quite different steric effects for reactions with hydroxylic solvents and alkenes, or even with different halide ions... [Pg.113]


See other pages where Trityl carbocations is mentioned: [Pg.370]    [Pg.1455]    [Pg.370]    [Pg.1455]    [Pg.276]    [Pg.54]    [Pg.8]    [Pg.9]    [Pg.139]    [Pg.159]    [Pg.567]    [Pg.379]    [Pg.377]    [Pg.378]    [Pg.31]    [Pg.31]    [Pg.32]    [Pg.34]    [Pg.71]    [Pg.77]    [Pg.103]   
See also in sourсe #XX -- [ Pg.276 , Pg.277 ]

See also in sourсe #XX -- [ Pg.276 , Pg.277 ]

See also in sourсe #XX -- [ Pg.276 , Pg.277 ]




SEARCH



Carbocations trityl cations

Trityl

Trityl carbocation

Trityl carbocation

Trityl carbocation resonance stabilization

Tritylation

Trityls

© 2024 chempedia.info