Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbocations aromatic

Water, alcohols, acids, anhydrides, and esters have varying chain-transfer properties [Mathie-son, 1963]. The presence of any of these transfer agents in sufficient concentrations results in Reaction 5-28 becoming the dominant mode of termination. Termination by these compounds involves transfer of HO, RO, or RCOO anion to the propagating carbocation. Aromatics, ethers, and alkyl halides are relatively weak chain-transfer agents. Transfer to aromatics occurs by alkylation of the aromatic ring. [Pg.388]

P. Rague Schleyer, K. Najafian, Are polyhedral boranes, carboranes and carbocations aromatic in The Borane, Carborane, Carbocation Continuum, J. Casanova (Ed.), John Wiley and Sons, Inc., New York, 1998, pp. 169-190. [Pg.18]

A wide variety of carbocations and carbodications, including those that are aromatically stabilized as well those as stabilized by heteroatoms, were reported in the nearly 200 publications on the topic during my Cleveland years. [Pg.94]

The carbocation is aromatic the hydrocarbon is not Although cycloheptatriene has six TT electrons m a conjugated system the ends of the triene system are separated by an sp hybridized carbon which prevents continuous tt electron delocalization... [Pg.457]

When we say cycloheptatriene is not aromatic but cycloheptatrienyl cation is we are not comparing the stability of the two to each other Cycloheptatriene is a stable hydrocarbon but does not possess the special stability required to be called aromatic Cycloheptatrienyl cation although aromatic is still a carbocation and reasonably reac tive toward nucleophiles Its special stability does not imply a rock like passivity but rather a much greater ease of formation than expected on the basis of the Lewis struc ture drawn for it A number of observations indicate that cycloheptatrienyl cation is far more stable than most other carbocations To emphasize its aromatic nature chemists often write the structure of cycloheptatrienyl cation m the Robinson circle m a ring style... [Pg.457]

Alkyl halides by themselves are insufficiently electrophilic to react with benzene Aluminum chloride serves as a Lewis acid catalyst to enhance the electrophihcity of the alkylating agent With tertiary and secondary alkyl halides the addition of aluminum chlonde leads to the formation of carbocations which then attack the aromatic ring... [Pg.481]

Oxygen stabilized carbocations of this type are far more stable than tertiary carbocations They are best represented by structures m which the positive charge is on oxygen because all the atoms have octets of electrons m such a structure Their stability permits them to be formed rapidly resulting m rates of electrophilic aromatic substitution that are much faster than that of benzene... [Pg.496]

Carbocations usually generated from an alkyl halide and aluminum chloride attack the aromatic ring to yield alkylbenzenes The arene must be at least as reactive as a halobenzene Carbocation rearrangements can occur especially with primary alkyl hal ides... [Pg.510]

Arenium ion (Section 12 2) The carbocation intermediate formed by attack of an electrophile on an aromatic substrate in electrophilic aromatic substitution See cyclohexadienyl cation... [Pg.1276]

All lation of Phenols. The approach used to synthesize commercially available alkylphenols is Friedel-Crafts alkylation. The specific procedure typically uses an alkene as the alkylating agent and an acid catalyst, generally a sulfonic acid. Alkene and catalyst interact to form a carbocation and counter ion (5) which interacts with phenol to form a 7T complex (6). This complex is held together by the overlap of the filled TT-orbital of the aromatic... [Pg.58]

The reactivity sequence furan > tellurophene > selenophene > thiophene is thus the same for all three reactions and is in the reverse order of the aromaticities of the ring systems assessed by a number of different criteria. The relative rate for the trifluoroacetylation of pyrrole is 5.3 x lo . It is interesting to note that AT-methylpyrrole is approximately twice as reactive to trifluoroacetylation as pyrrole itself. The enhanced reactivity of pyrrole compared with the other monocyclic systems is also demonstrated by the relative rates of bromination of the 2-methoxycarbonyl derivatives, which gave the reactivity sequence pyrrole>furan > selenophene > thiophene, and by the rate data on the reaction of the iron tricarbonyl-complexed carbocation [C6H7Fe(CO)3] (35) with a further selection of heteroaromatic substrates (Scheme 5). The comparative rates of reaction from this substitution were 2-methylindole == AT-methylindole>indole > pyrrole > furan > thiophene (73CC540). [Pg.43]

Measurement of (R /R ) can be accomplished by cyclic voltammetry for relatively Stable species and by other methods for less stable cations. The values obtained for AG -range from 83kcal/mol for the aromatic tropylium ion to 130kcal/mol for destabilized betizylic cations. For stable carbocations, the results obtained by this method correlate with cation stabiUty as measured by pKf.+. Some of these data are presented in Table 5.3. [Pg.280]

Very stable carbocation (stabilized by both alkoxy function and aromaticity)... [Pg.453]

The Friedel-Crafts reaction is a very important method for introducing alkyl substituents on an aromatic ring. It involves generation of a carbocation or related electrophilic species. The most common method of generating these electrophiles involves reaction between an alkyl halide and a Lewis acid. The usual Friedel-Crafts catalyst for preparative work is AICI3, but other Lewis acids such as SbFj, TiC, SnCl4, and BF3 can also promote reaction. Alternative routes to alkylating ecies include protonation of alcohols and alkenes. [Pg.580]

All these kinetic results can be accommodated by a general mechanism that incorporates the following fundamental components (1) complexation of the alkylating agent and the Lewis acid (2) electrophilic attack on the aromatic substrate to form the a-complex and (3) deprotonation. In many systems, there m be an ionization of the complex to yield a discrete carbocation. This step accounts for the fact that rearrangement of the alkyl group is frequently observed during Friedel-Crafts alkylation. [Pg.581]

Trialkyltin substituents are also powerful ipso-directing groups. The overall electronic effects are similar to those in silanes, but the tin substituent is a better electron donor. The electron density at carbon is increased, as is the stabilization of /S-carbocation character. Acidic cleavage of arylstannanes is formulated as an electrophilic aromatic substitution proceeding through an ipso-oriented c-complex. ... [Pg.589]

An ipso attack on the fluorine carbon position of 4-fIuorophenol at -40 °C affords 4-fluoro-4-nitrocyclohexa-2 5-dienone in addtion to 2-nitrophenol The cyclodienone slowly isomenzes to the 2-nitrophenol Although ipso nitration on 4-fluorophenyl acetate furnishes the same cyclodienone the major by-product is 4 fluoro-2,6-dinitrophenol [25] Under similar conditions, 4-fluoroanisole pnmar ily yields the 2-nitro isomer and 6% of the cyclodienone The isolated 2 nitro isomer IS postulated to form by attack of the nitromum ion ipso to the fluorine with concomitant capture of the incipient carbocation by acetic acid Loss of the elements of methyl acetate follows The nitrodienone, being the keto tautomer of the nitrophenol, aromatizes to the isolated product [26] (equation 20) Intramolecular capture of the intermediate carbocation occurs in nitration of 2-(4-fluorophenoxy)-2-methyIpropanoic acid at low temperature to give the spiro products 3 3-di-methyl-8 fluoro 8 nitro-1,4 dioxaspiro[4 5]deca 6,9 dien 2 one and the 10-nitro isomer [2d] (equation 21)... [Pg.393]

The regioselectivity of electrophilic addition is governed by the ability of an aromatic ring to stabilize an adjacent carbocation. This is clearly seen in the addition of hydrogen chloride to indene. Only a single chloride is formed. [Pg.447]

In some instances the attack of the arene on the nitrilium salt occurs at the ipso carbon rather than the ortho carbon. For example, the Bischler-Napieralski cyclization of phenethyl amide 10 affords a 2 1 mixture of regioisomeric products 11 and 12. The formation of 12 presumably results from attack of the ipso aromatic carbon on the nitrilium salt 13 followed by rearrangement of the spirocyclic carbocation 14 to afford 15, which upon loss of a proton vields product 12. ... [Pg.377]

Certain aliphatic diazonium species such as bridgehead diazonium ions and cyclo-propanediazonium ions, where the usual loss of N2 would lead to very unstable carbocations, have been coupled to aromatic substrates. ... [Pg.86]

Aromatization of paraffins can occur through a dehydrocyclization reaction. Olefinic compounds formed by the beta scission can form a carbocation intermediate with the configuration conducive to cyclization. For example, if a carbocation such as that shown below is formed (by any of the methods mentioned earlier), cyclization is likely to occur. [Pg.74]

Aromatic compounds such as benzene react with alkyl chlorides in Ihe presence of AlCl i catalyst to yield alkylbenzenes. The reaction occurs through a carbocation intermediate, formed by reaction of the alkyl chloride with AICI3 (R—Cl + A1CI 1 - U+ + AICl4 ). How can you explain the observaiion that reaction of benzene with 1-chloropropane yields isopropylbenzene as the major product ... [Pg.211]

Although five equivalent resonance structures can be drawn for all three species, Huckel s rule predicts that only the six-ir-electron anion should be aromatic. The four-77-electron cyciopentadienyl carbocation and the five-7r-electron cyciopentadienyl radical are predicted to be unstable and antiaromatic. [Pg.526]


See other pages where Carbocations aromatic is mentioned: [Pg.445]    [Pg.497]    [Pg.553]    [Pg.493]    [Pg.440]    [Pg.276]    [Pg.590]    [Pg.60]    [Pg.113]    [Pg.995]    [Pg.445]    [Pg.497]    [Pg.377]   
See also in sourсe #XX -- [ Pg.309 , Pg.310 ]

See also in sourсe #XX -- [ Pg.285 , Pg.286 , Pg.288 , Pg.289 ]

See also in sourсe #XX -- [ Pg.285 , Pg.286 , Pg.288 , Pg.289 ]

See also in sourсe #XX -- [ Pg.285 , Pg.286 , Pg.288 , Pg.289 ]

See also in sourсe #XX -- [ Pg.309 , Pg.310 ]

See also in sourсe #XX -- [ Pg.303 ]

See also in sourсe #XX -- [ Pg.96 , Pg.97 , Pg.98 , Pg.99 , Pg.187 , Pg.188 , Pg.285 , Pg.286 , Pg.288 , Pg.289 , Pg.309 , Pg.310 , Pg.321 , Pg.322 ]




SEARCH



Aromatics carbocations

© 2024 chempedia.info