Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbenoids enantioselective reactions

A vast array of chiral catalysts have been developed for the enantioselective reactions of diazo compounds but the majority has been applied to asymmetric cyclopropanations of alkyl diazoacetates [2]. Prominent catalysts for asymmetric intermolecular C-H insertions are the dirhodium tetraprolinate catalysts, Rh2(S-TBSP)4 (la) and Rh2(S-DOSP)4 (lb), and the bridged analogue Rh2(S-biDOSP)2 (2) [7] (Fig. 1). A related prolinate catalyst is the amide 3 [8]. Another catalyst that has been occasionally used in intermolecular C-H activations is Rh2(S-MEPY)4 (4) [9], The most notable catalysts that have been used in enantioselective ylide transformations are the valine derivative, Rh2(S-BPTV)4 (5) [10], and the binaphthylphosphate catalysts, Rh2(R-BNP)4 (6a) and Rh2(R-DDNP)4 (6b) [11]. All of the catalysts tend to be very active in the decomposition of diazo compounds and generally, carbenoid reactions are conducted with 1 mol % or less of catalyst loading [1-3]. [Pg.84]

A related allylic C-H insertion that has considerable promise for strategic organic synthesis is the reaction with enol silyl ethers [23]. The resulting silyl-protected 1,5-dicarbonyls would otherwise typically be formed by means of a Michael addition. Even though with ethyl diazoacetates vinyl ethers are readily cyclopropanated [l],such reactions are generally disfavored in trisubstituted vinyl ethers with the sterically crowded donor/acceptor carbenoids [23]. Instead, C-H insertion predominates. Again, if sufficient size differentiation exists at the C-H activation site, highly diastereoselective and enantioselective reactions can be achieved as illustrated in the reaction of 20 with 17 to form 21 [23]. [Pg.87]

In the laboratory of G.A. Sulikowski, an enantioselective synthesis of a 1,2-aziridinomitosene, a key substructure of the mitomycin antitumor antibiotics, was developed. Key transformations in the synthesis involved the Buchwald-Hartwig cross-coupling and chemoselective intramolecular carbon-hydrogen metal-carbenoid insertion reaction. [Pg.71]

Other enantioselective reactions. Several asymmetric reactions worth mentioning are the Cu-cataly/.ed allylic oxidation in the presence of 105, 106, or 107- - with t-butyl perbenzoate, oxidation of sulfides (/-BuOOH-Ti ) in the presence of a 4,4 -dimer of B-aromatic l-hydroxyestrane,-" the reductive amination by chiral t-butylsulfinamidc,- the glyoxylate ene reaction promoted by Yb(OTf), and ent-l ) C-arylation ol phenols with aryllcad reagents under the influence of brucine,- and the C—H bond insertion by Rh-carbenoids."-"... [Pg.118]

Arenes suffer dearomatization via cyclopropanation upon reaction with a-diazocarbonyl compounds (Btlchner reaction) [76]. Initially formed norcaradiene products are usually present in equilibrium with cycloheptatrienes formed via electrocyclic cyclopropane ring opening. The reaction is dramatically promoted by transition metal catalysts (usually Cu(I) or Rh(II) complexes) that give metal-stabilized carbenoids upon reaction with diazo compounds. Inter- and intramolecular manifolds are known, and asymmetric variants employing substrate control and chiral transition metal catalysts have been developed [77]. Effective chiral catalysts for intramolecular Buchner reactions include Rh Cmandelate), rhodium carboxamidates, and Cu(I)-bis(oxazolines). While enantioselectivities as high as 95% have been reported, more modest levels of asymmetric induction are typically observed. [Pg.413]

For a reaction as complex as catalytic enantioselective cyclopropanation with zinc carbenoids, there are many experimental variables that influence the rate, yield and selectivity of the process. From an empirical point of view, it is important to identify the optimal combination of variables that affords the best results. From a mechanistic point of view, a great deal of valuable information can be gleaned from the response of a complex reaction system to changes in, inter alia, stoichiometry, addition order, solvent, temperature etc. Each of these features provides some insight into how the reagents and substrates interact with the catalyst or even what is the true nature of the catalytic species. [Pg.127]

This area of research has only recently attracted the attention of synthetic organic chemists, but there has been a flurry of impressive activity in the area. Simple (i. e., unstabilized) carbenes suffer from many of the problems of nitrenes (vide infra) and most reported synthetically useful procedures use carbenoids the majority of recent reports have focussed upon reactions between a-diazoesters and imines in the presence of a range of catalysts. In one of the earliest reports of enantioselective carbene-imine reactions, for instance, Jacobsen and Finney reported that ethyl diazoacetate reacts with N-arylaldimines in the presence of cop-per(i) hexafluorophosphate with mediocre stereoselectivity to give N-arylaziridine carboxylates. Though the diastereoselectivities of the reaction were often acceptable (usually >10 1, in favor of the cis isomers) the observed enantioselectivity was low (no more than 44% ee Scheme 4.27) [33],... [Pg.130]

Muller et al. have also examined the enantioselectivity and the stereochemical course of copper-catalyzed intramolecular CH insertions of phenyl-iodonium ylides [34]. The decomposition of diazo compounds in the presence of transition metals leads to typical reactions for metal-carbenoid intermediates, such as cyclopropanations, insertions into X - H bonds, and formation of ylides with heteroatoms that have available lone pairs. Since diazo compounds are potentially explosive, toxic, and carcinogenic, the number of industrial applications is limited. Phenyliodonium ylides are potential substitutes for diazo compounds in metal-carbenoid reactions. Their photochemical, thermal, and transition-metal-catalyzed decompositions exhibit some similarities to those of diazo compounds. [Pg.80]

Enantioselective carbenoid cyclopropanation can be expected to occur when either an olefin bearing a chiral substituent, or such a diazo compound or a chiral catalyst is present. Only the latter alternative has been widely applied in practice. All efficient chiral catalysts which are known at present are copper or cobalt(II) chelates, whereas palladium complexes 86) proved to be uneflective. The carbenoid reactions between alkyl diazoacetates and styrene or 1,1 -diphenylethylene (Scheme 27) are usually chosen to test the efficiency of a chiral catalyst. As will be seen in the following, the extent to which optical induction is brought about by enantioselection either at a prochiral olefin or at a prochiral carbenoid center, varies widely with the chiral catalyst used. [Pg.159]

Diastereoface-differentiating reactions of a carbenoid with an alkene bearing an easily removable, chiral substituent have been used only ocassionally for the enantioselective production of a cyclopropane 216). A recent example is given by the cyclopropanation of the (—)-ephedrine-derived olefin 223 with CH2N2/Pd(OAc)2 after removal of the protecting group, (1/ , 2R )-2-phenylcyclopropane carbaldehyde was isolated with at least 90% e.e. 37). [Pg.172]

Using the results of an earlier study concerning enantioselective copper-catalyzed intramolecular C—H insertion of metal carbenoids,109 an interesting system for optimizing the proper combination of ligand, transition metal, and solvent for the reaction of the diazo compound (75) was devised (see Scheme 19).110 The reaction parameters were varied systematically on a standard 96-well microtiter/filtration plate. A total of five different ligands, seven metal precursors, and four solvents were tested in an iterative optimization mode. Standard HPLC was used to monitor stereoselectivity following DDQ-induced oxidation. This type of catalyst search led to the... [Pg.537]

Activation of a C-H bond requires a metallocarbenoid of suitable reactivity and electrophilicity.105-115 Most of the early literature on metal-catalyzed carbenoid reactions used copper complexes as the catalysts.46,116 Several chiral complexes with Ce-symmetric ligands have been explored for selective C-H insertion in the last decade.117-127 However, only a few isolated cases have been reported of impressive asymmetric induction in copper-catalyzed C-H insertion reactions.118,124 The scope of carbenoid-induced C-H insertion expanded greatly with the introduction of dirhodium complexes as catalysts. Building on initial findings from achiral catalysts, four types of chiral rhodium(n) complexes have been developed for enantioselective catalysis in C-H activation reactions. They are rhodium(n) carboxylates, rhodium(n) carboxamidates, rhodium(n) phosphates, and < // < -metallated arylphosphine rhodium(n) complexes. [Pg.182]

Rhodium(n) carboxamidates are clearly superior to all other types of catalysts in effecting highly chemo-, regio-, diastereo-, and enantioselective intramolecular C-H activation reactions of carbenoids derived from diazoacetates. Specifically, Rh2(4Y-MPPIM)4 is the catalyst of choice for C-H activation reactions of simple primary and secondary alkyl diazoacetates. Likewise, Rh2(4Y-MACIM)4 thus far has been the most successful catalyst with tertiary alkyl diazoacetates, whereas for primary acceptor-substituted diazoacetates with a pendant olefin side chain, Rh2(4A-MEOX)4 has proved to be highly selective. [Pg.191]

Cyclopropanation reactions can be promoted using copper or rhodium catalysts or indeed systems based on other metals. As early as 1965 Nozaki showed that chiral copper complexes could promote asymmetric addition of a carbenoid species (derived from a diazoester) to an alkene. This pioneering study was embroidered by Aratani and co-workers who showed a highly enantioselective process could be obtained by modifying the chiral copper... [Pg.38]

B uilding on the original proposal by Yates, the mechanism of this reaction is believed to involve the formation of copper carbenoids as intermediates, Scheme 1. Beyond the fact that copper, its ligands, the carbenoid fragment, and alkene are involved in the stereochemistry-determining event, as evidenced by Noyori et al. (2) and later by Moser (11, 12), little definitive mechanistic information has been acquired for this process. The basics of the mechanism will be discussed in this section. In subsequent sections detailing enantioselective variants, specific factors that have added to the understanding of this reaction will be addressed as will the models used to rationalize the observed stereochemistry. [Pg.5]

The cyclopropanation utilizing donor/acceptor rhodium carbenoids can be extended to a range of monosubstituted alkenes, occurring with very high asymmetric induction (Tab. 14.4) [40]. Reactions with electron-rich alkenes, where low enantioselectivity was observed at room temperature, could be drastically improved using the more hydrocarbon-soluble Rh2(S-DOSP)4 catalyst at -78°C. The highest enantioselectivity is obtained when a small ester group such as a methyl ester is used [40], a trend which is the opposite to that seen with the unsubstituted diazoacetate system [16]. [Pg.305]

Carbenoids derived from the aryldiazoacetates are excellent donor/acceptor systems for the asymmetric cyclopropanation reaction [22]. Methyl phenyldiazoacetate 3 cyclopropanation of monosubstituted alkenes catalyzed by Rh2(S-DOSP)4 is highly diaster-eo- and enantioselective (Tab. 14.5) [22]. Higher enantioselectivities can be obtained when these reactions are performed at -78°C, as the catalyst maintains high solubility and activity at this temperature. The phenyldiazoacetate system has been evaluated using many popular rhodium(II) and copper catalysts the rhodium(ll) prolinates have proven to be superior catalysts for this class of carbenoids [37, 38]. [Pg.305]


See other pages where Carbenoids enantioselective reactions is mentioned: [Pg.129]    [Pg.209]    [Pg.311]    [Pg.311]    [Pg.373]    [Pg.373]    [Pg.375]    [Pg.377]    [Pg.379]    [Pg.382]    [Pg.181]    [Pg.122]    [Pg.133]    [Pg.133]    [Pg.146]    [Pg.1167]    [Pg.73]    [Pg.219]    [Pg.355]    [Pg.583]    [Pg.170]    [Pg.182]    [Pg.185]    [Pg.188]    [Pg.193]    [Pg.49]    [Pg.411]    [Pg.162]    [Pg.869]    [Pg.48]   
See also in sourсe #XX -- [ Pg.373 , Pg.381 ]




SEARCH



Carbenoid

Carbenoid reactions

Carbenoids

Enantioselective Reactions of Carbenoids

Enantioselective reaction

© 2024 chempedia.info