Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ylide Transformations

The premier example of this process in an ylide transformation designed for [2,3]-sigmatropic rearrangement is reported in Eq. 15 [107]. The threo product 47 is dominant with the use of the chiral Rh2(MEOX)4 catalysts but is the minor product with Rh2(OAc)4. That this process occurs through the metal-stabilized ylide rather than a chiral free ylide was shown from asymmetric induction using allyl iodide and ethyl diazoacetate [107]. Somewhat lower enantioselectivities have been observed in other systems [108]. [Pg.218]

A vast array of chiral catalysts have been developed for the enantioselective reactions of diazo compounds but the majority has been applied to asymmetric cyclopropanations of alkyl diazoacetates [2]. Prominent catalysts for asymmetric intermolecular C-H insertions are the dirhodium tetraprolinate catalysts, Rh2(S-TBSP)4 (la) and Rh2(S-DOSP)4 (lb), and the bridged analogue Rh2(S-biDOSP)2 (2) [7] (Fig. 1). A related prolinate catalyst is the amide 3 [8]. Another catalyst that has been occasionally used in intermolecular C-H activations is Rh2(S-MEPY)4 (4) [9], The most notable catalysts that have been used in enantioselective ylide transformations are the valine derivative, Rh2(S-BPTV)4 (5) [10], and the binaphthylphosphate catalysts, Rh2(R-BNP)4 (6a) and Rh2(R-DDNP)4 (6b) [11]. All of the catalysts tend to be very active in the decomposition of diazo compounds and generally, carbenoid reactions are conducted with 1 mol % or less of catalyst loading [1-3]. [Pg.84]

For isoxazoles the first step is the fission of the weak N—O bond to give the diradical (51) which is in equilibrium with the vinylnitrene (52). Recyclization now gives the substituted 2//-azirine (53) which via the carbonyl-stabilized nitrile ylide (54) can give the oxazole (55). In some cases the 2H-azirine, which is formed both photochemically and thermally, has been isolated in other cases it is transformed quickly into the oxazole (79AHC(2.5)U7). [Pg.46]

In transforming bis-ketone 45 to keto-epoxide 46, the elevated stereoselectivity was believed to be a consequence of tbe molecular shape — tbe sulfur ylide attacked preferentially from tbe convex face of the strongly puckered molecule of 45. Moreover, the pronounced chemoselectivity was attributed to tbe increased electropbilicity of the furanone versus the pyranone carbonyl, as a result of an inductive effect generated by tbe pair of spiroacetal oxygen substituents at tbe furanone a-position. ... [Pg.6]

Reagent-controlled asymmetric cyclopropanation is relatively more difficult using sulfur ylides, although it has been done. It is more often accomplished using chiral aminosulfoxonium ylides. Finally, more complex sulfur ylides (e.g. 64) may result in more elaborate cyclopropane synthesis, as exemplified by the transformation 65 66 ... [Pg.9]

In Corey and Chaykovsky s initial investigation, a cyclic ylide 79 was observed from the reaction of ethyl cinnamate with ylide 1 in addition to 32% of cyclopropane 53. In a similar fashion, an intermolecular cycloaddition between 2-acyl-3,3-bis(methylthio)acrylnitrile 80 and 1 furnished 1-methylthiabenzene 1-oxide 81. Similar cases are found in transformations of ynone 82 to 1-arylthiabenzene 1-oxide 83 and N-cyanoimidate 84 to adduct ylide 85, which was subsequently transformed to 1-methyl-lX -4-thiazin-l-oxide 86. ... [Pg.11]

Phosphoms ylides in synthesis and transformations of heterocycles 94MI4. [Pg.215]

It would be expected that a few straightforward steps could accomplish the transformation of alkyl bromide 14 into phosphorus ylide 12 (Scheme 2b). On the other hand, the evolution of 14 from substituted aromatic furan ring 15 may not be obvious. It is, in fact, conceivable that the action of ethylene glycol on substituted furan... [Pg.87]

The adjacent iodine and lactone groupings in 16 constitute the structural prerequisite, or retron, for the iodolactonization transform.15 It was anticipated that the action of iodine on unsaturated carboxylic acid 17 would induce iodolactonization16 to give iodo-lactone 16. The cis C20-C21 double bond in 17 provides a convenient opportunity for molecular simplification. In the synthetic direction, a Wittig reaction17 between the nonstabilized phosphorous ylide derived from 19 and aldehyde 18 could result in the formation of cis alkene 17. Enantiomerically pure (/ )-citronellic acid (20) and (+)-/ -hydroxyisobutyric acid (11) are readily available sources of chirality that could be converted in a straightforward manner into optically active building blocks 18 and 19, respectively. [Pg.235]

A novel guanidinium ylide-mediated procedure has recently been reported by Ishi-kawa [62]. Though not an imine transformation, it does employ an imine precursor in the fonn of an aldehyde. Guanidinium ylides react with aldehydes to form aziridines (Scheme 1.35). The mechanism for the formation of the aziridine is believed to involve [3+2] cycloaddition between the guanidinium ylide 112 and the aldehyde, followed by stereospecific extrusion of the urea with concomitant aziridine formation. [Pg.29]

These carbene (or alkylidene) complexes are used for various transformations. Known reactions of these complexes are (a) alkene metathesis, (b) alkene cyclopropanation, (c) carbonyl alkenation, (d) insertion into C-H, N-H and O-H bonds, (e) ylide formation and (f) dimerization. The reactivity of these complexes can be tuned by varying the metal, oxidation state or ligands. Nowadays carbene complexes with cumulated double bonds have also been synthesized and investigated [45-49] as well as carbene cluster compounds, which will not be discussed here [50]. [Pg.6]

The use of dirhodium(II) catalysts to generate ylides that, in turn, undergo a vast array of chemical transformations is one of the major achievements in metal carbene chemistry [1,103]. Several recent reviews have presented a wealth of information on these transformations [1, 103-106], and recent efforts have been primarily directed to establishing asymmetric induction, which arises when the chiral catalyst remains bound to the intermediate ylide during bond formation (Scheme 11). [Pg.217]

Among various modifications of the side chain of stabilized ylides [13,14] can be pointed out the preparation and transformation of the phenyliodonio a-substi-tuted phosphonium yhdes (Scheme 3) [15]. These compounds represent a potentially useful class of reagents, in which the iodonium group can be further substituted by nucleophiles such as PhSLi. [Pg.44]

It is interesting to notice that the complex 58 is also able to react with soft donor hgands such as triphenylphosphine resulting in the formation in very mild conditions of the unexpected orthometallated complex 59 (Scheme 23) [89,91, 92]. The ligand here is linked to the metal through both an aromatic and an ylidic carbon. Other transformations are realized from 58 leading, including the compounds of the previous scheme, to four different structures for the bis-ylide (i) C,C-chelate (ii) C,C-orthometallated (iii) C,C-orthometallated and free ylide (iv) C,C,C-terdentate (Scheme 23). [Pg.58]

The jS-oxido-ylides synthesis of trisubstituted olefins has also been applied to the synthesis of farnesol (127). The phosphonium salt (123) with the aldehyde (124) and formaldehyde gave the hydroxy farnesol derivative (125) which was transformed into farnesol (127) and into (126), a position isomer of Cj juvenile hormone. [Pg.170]

Sulfur ylides can also transfer substituted methylene units, such as isopropylidene (Entries 10 and 11) or cyclopropylidene (Entries 12 and 13). The oxaspiropentanes formed by reaction of aldehydes and ketones with diphenylsulfonium cyclopropylide are useful intermediates in a number of transformations such as acid-catalyzed rearrangement to cyclobutanones.285... [Pg.179]

Assuming a reactive oxonium ylide 147 (or its metalated form) as the central intermediate in the above transformations, the symmetry-allowed [2,3] rearrangement would account for all or part of 148. The symmetry-forbidden [1,2] rearrangement product 150 could result from a dissociative process such as 147 - 149. Both as a radical pair and an ion pair, 149 would be stabilized by the respective substituents recombination would produce both [1,2] and additional [2,3] rearrangement product. Furthermore, the ROH-insertion product 146 could arise from 149. For the allyl halide reactions, the [1,2] pathway was envisaged as occurring via allyl metal complexes (Scheme 24) rather than an ion or radical pair such as 149. The remarkable dependence of the yield of [1,2] product 150 on the allyl acetal substituents seems, however, to justify a metal-free precursor with an allyl cation or allyl radical moiety. [Pg.140]

Intramolecular oxonium ylide formation is assumed to initialize the copper-catalyzed transformation of a, (3-epoxy diazomethyl ketones 341 to olefins 342 in the presence of an alcohol 333 . The reaction may be described as an intramolecular oxygen transfer from the epoxide ring to the carbenoid carbon atom, yielding a p,y-unsaturated a-ketoaldehyde which is then acetalized. A detailed reaction mechanism has been proposed. In some cases, the oxonium-ylide pathway gives rise to additional products when the reaction is catalyzed by copper powder. If, on the other hand, diazoketones of type 341 are heated in the presence of olefins (e.g. styrene, cyclohexene, cyclopen-tene, but not isopropenyl acetate or 2,3-dimethyl-2-butene) and palladium(II) acetate, intermolecular cyclopropanation rather than oxonium ylide derived chemistry takes place 334 ). [Pg.210]

Interaction of an electrophilic carbene or carbenoid with R—S—R compounds often results in the formation of sulfonium ylides. If the carbene substituents are suited to effectively stabilize a negative charge, these ylides are likely to be isolable otherwiese, their intermediary occurence may become evident from products of further transformation. Ando 152 b) has given an informative review on sulfonium ylide chemistry, including their formation by photochemical or copper-catalyzed decomposition of diazocarbonyl compounds. More recent examples, including the generation and reactions of ylides obtained by metal-catalyzed decomposition of diazo compounds in the presence of thiophenes (Sect. 4.2), allyl sulfides and allyl dithioketals (Sect. 2.3.4) have already been presented. [Pg.211]

The sulfonium ylide derived chemistry of penicillins continues to meet the interest of several research groups. It is well known that intermolecular carbenoid attack at the sulfur atom generates a sulfonium ylide which undergoes spontaneous opening of the thiazolidine ring to furnish a l,2-sm>-penicillin 326). Novel examples of this reaction type were found upon Rb2(0Ac)4-catalyzed decomposition of diazomalonic esters in the presence of various penicillins this transformation constituted the opening step of a synthetic sequence directed towards 2-alkoxycarbonyl-cephems 345 a) or modified penicillins 345 b). Similar to its reaction with 4-thio-2-azetidinone... [Pg.216]


See other pages where Ylide Transformations is mentioned: [Pg.19]    [Pg.302]    [Pg.326]    [Pg.326]    [Pg.578]    [Pg.578]    [Pg.75]    [Pg.19]    [Pg.570]    [Pg.570]    [Pg.19]    [Pg.302]    [Pg.326]    [Pg.326]    [Pg.578]    [Pg.578]    [Pg.75]    [Pg.19]    [Pg.570]    [Pg.570]    [Pg.108]    [Pg.77]    [Pg.10]    [Pg.202]    [Pg.551]    [Pg.771]    [Pg.251]    [Pg.259]    [Pg.59]    [Pg.165]    [Pg.27]    [Pg.197]    [Pg.311]    [Pg.174]    [Pg.420]    [Pg.124]    [Pg.426]    [Pg.175]    [Pg.212]    [Pg.232]   


SEARCH



© 2024 chempedia.info