Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbenium ions halides

MarkownikofT s rule The rule states that in the addition of hydrogen halides to an ethyl-enic double bond, the halogen attaches itself to the carbon atom united to the smaller number of hydrogen atoms. The rule may generally be relied on to predict the major product of such an addition and may be easily understood by considering the relative stabilities of the alternative carbenium ions produced by protonation of the alkene in some cases some of the alternative compound is formed. The rule usually breaks down for hydrogen bromide addition reactions if traces of peroxides are present (anti-MarkownikofT addition). [Pg.251]

The synthesis of an alkylated aromatic compound 3 by reaction of an aromatic substrate 1 with an alkyl halide 2, catalyzed by a Lewis acid, is called the Friedel-Crafts alkylation This method is closely related to the Friedel-Crafts acylation. Instead of the alkyl halide, an alcohol or alkene can be used as reactant for the aromatic substrate under Friedel-Crafts conditions. The general principle is the intermediate formation of a carbenium ion species, which is capable of reacting as the electrophile in an electrophilic aromatic substitution reaction. [Pg.120]

The initial step is the coordination of the alkyl halide 2 to the Lewis acid to give a complex 4. The polar complex 4 can react as electrophilic agent. In cases where the group R can form a stable carbenium ion, e.g. a tert-buiyX cation, this may then act as the electrophile instead. The extent of polarization or even cleavage of the R-X bond depends on the structure of R as well as the Lewis acid used. The addition of carbenium ion species to the aromatic reactant, e.g. benzene 1, leads to formation of a cr-complex, e.g. the cyclohexadienyl cation 6, from which the aromatic system is reconstituted by loss of a proton ... [Pg.120]

A wide variety of NMR methods are being applied to understand solid acids including zeolites and metal halides. Proton NMR is useful for characterizing Brpnsted sites in zeolites. Many nuclei are suitable for the study of probe molecules adsorbed directly or formed in situ as either intermediates or products. Adsorbates on metal halide powders display a rich carbenium ion chemistry. The interpretation of NMR experiments on solid acids has been greatly improved by Ae integration of theoretical chemistry and experiment. [Pg.573]

Figure 3 shows 13c MAS spectra of acetone-2-13c on various materials. Two isotropic peaks at 231 and 227 ppm were observed for acetone on ZnCl2 powder, and appreciable chemical shift anisotropy was reflected in the sideband patterns at 193 K. The 231 ppm peak was in complete agreement with the shift observed for acetone diffused into ZnY zeolite. A much greater shift, 245 ppm, was observed on AICI3 powder. For comparison, acetone has chemical shifts of 205 ppm in CDCI3 solution, 244 ppm in concentrated H2SO4 and 249 ppm in superacid solutions. The resonance structures 5 for acetone on metal halide salts underscore the similarity of the acetone complex to carbenium ions. The relative contributions of the two canonical forms rationalizes the dependence of the observed isotropic 13c shift on the Lewis acidity of the metal halide. [Pg.578]

At the IUPAC Polymer Symposium in Helsinki in 1972, I put forward a new theory concerning the initiation of cationic polymerisations by metal halides [1]. This comprised three principal ideas (a) Initiating metal halides undergo self-ionisation in solution, (b) Metal halide cations formed in this way can be the principal initiators in certain circumstances, and act by combining additively with the monomer to give a metalated carbenium ion. (c) The metal halides form complexes with the monomers. [Pg.283]

We concluded, therefore, that in sufficiently pure alkyl halide solvents the tert-alkyl tetrahaloaluminates are stable electrolytes and that previous failures to produce them, and the consequent legend of the instability of tcrt-alkyl carbenium ions, arose from the use of inappropriate and insufficiently rigorous experimental techniques. On this basis it seems highly probable that in the polymerised solutions the cations R+ partaking in reaction (viii) were also original ions, i.e., 2 at the end of a live chain and 3 and 4 formed by alumination of a terminal double bond, and not derived ions formed by degradative reactions of monomer or polymer. [Pg.320]

Simple 1,2-additions to this compound have been observed123131132 also in other sulfenylation reactions, and in other electrophilic additions involving strongly bridged intermediates. Although these results have been interpreted as evidence that additions of sulfenyl halides to symmetrical alkenes do not involve open carbenium ions before the product-determining step, the different behavior observed in the case of 49 suggests123 that close proximity is necessary to have transannular participation of 7r-bonds, at least in additions of sulfenyl derivatives and of some other electrophiles carried out in the presence of efficient nucleophiles. [Pg.613]

Aqueous ethanolyses of adamantylideneadamantyl halides show Grunwald-Winstein sensitivity parameters (m) of 0.74 ( 0.06), 0.90 ( 0.01), and 0.88 ( 0.03) for the chloride, bromide, and iodide compounds, respectively. All reaction products are formed with retention of both the ring structure and the stereochemistry of the reaction centre. Observed common-ion rate depressions are consistent with a reaction pathway via a free solvated homoallylic carbenium ion. [Pg.341]

In both cations 221 and 225 the alkyl groups are easily split off by halide ions. Whereas addition to the carbenium ion leads in a kinetically controlled reaction to the addition products 226 and 227, this type of reaction leads to the thermodynamic stable unsaturated phosphinic acid esters 228 and 229. [Pg.134]

The principal components of the trityl cation in zeolite HY are <5 = 282 ppm and <5j = 55 ppm. It is instructive to tabulate all of the 13C principal component data measured for free carbenium ions in zeolites as well as for a few carbenium ions characterized in other solid acid media (Table III). The zeolitic species, in addition to the trityl cation (119), are the substituted cyclopentenyl cation 8 (102), the phenylindanyl cation 13, and the methylindanyl cation 12 (113). Values for the rert-butyl cation 2 and methylcyclopentyl cation 17 (prepared on metal halides) (43, 45) are included for comparison. Note that the ordering of isotropic chemical shifts is reasonably consistent with one s intuition from resonance structures i.e., the more delocalized the positive charge, the smaller the isotropic shift. This effect is even more apparent in the magnitudes of the CSA. Since... [Pg.149]

Acylium ions can be formed in superacid solutions from carboxylic acids and acyl halides (8). They are among the best characterized carbenium ions, and single-crystal X-ray structures of a number of them have been determined as BFf, SbFg, or TaClfi salts (135-139). Solid-state NMR characterization of these species on AlBr3 and other solid superacids was described earlier in this review. [Pg.160]

The observation of alkyl cations such as the ferf-butyl cation [trimethyl-carbenium ion, (CH3)3C+] 1 and the isopropyl cation [dimethylcarbenium ion, (CH3)2CH+] 2 was a long-standing challenge. The existence of alkyl cations in systems containing alkyl halides and Lewis acids has been inferred from a variety of observations, such as vapor pressure depressions of CH3C1 and C2H5CI in the... [Pg.93]

Typical alkylation reactions are those of propane, isobutane, and n-butane by the ferf-butyl or sw-butyl ion. These systems are somewhat interconvertible by competing hydride transfer and rearrangement of the carbenium ions. The reactions were carried out using alkyl carbenium ion hexafluoroantimonate salts prepared from the corresponding halides and antimony pentafluoride in sulfuryl chloride fluoride solution and treating them in the same solvent with alkanes. The reagents were mixed at —78°C warmed up to — 20°C and quenched with ice water before analysis. The intermolecular hydride transfer between tertiary and secondary carbenium ions and alkanes is generally much faster than the alkylation reaction. Consequently, the alkylation products are also those derived from the new alkanes and carbenium ions formed in the hydride transfer reaction. [Pg.545]

A very interesting paper80 reported studies of the reactions of several substituted benzhydryl carbenium ions, generated by laser flash photolysis, with halide ions in several solvents. This work provided the nucleophilicity N of chloride and bromide ions in several solvents. These data, along with the ionization rate constants and the solvolysis rate constants for the reactions of substituted benzyhdryl halides, was used to construct quantitative energy surfaces for the. S N 1 reactions of substituted benzhydryl halides in several solvents. [Pg.228]

The presence of group 4 metals P to a carbenium ion has a dramatic effect on the stability of the carbenium ion, a remarkable phenomenon known as the P-effect.12 29, 30 The silicon P-effect was discovered in 1937 by Ushakov and Itenberg,31 who noted the exceptional reactivity of P-silyl-substituted halides R3SiCH2CH2X towards elimination (Scheme 1). The effect has since been the subject of many mechanistic32-36 and theoretical studies37-39 and several reviews.10-12,29... [Pg.142]

Allyl halides heterolyze just as easily as benzyl halides because they also produce a resonance-stabilized carbenium ion. Even faster heterolyses are possible when the charge of the resulting carbenium ion can be delocalized by more than one unsaturated substituent and can thereby be stabilized especially well. This explains the remarkably high SN1 reactivities of the benzhydryl halides (via the benzhydryl cation) and especially of the triphenylmethyl halides (via the trityl cation) ... [Pg.77]

Fig. 4.34. Saytzeff preference of El eliminations from tert-amyl halides and energy profile. The SaytzeffiHofmann preference amounts to 82 18 regardless of which halide ion accompanies the carbenium ion. This observation is explained most simply by the assumption that this halide ion is not involved in the deprotonation step forming the C=C double bond. Fig. 4.34. Saytzeff preference of El eliminations from tert-amyl halides and energy profile. The SaytzeffiHofmann preference amounts to 82 18 regardless of which halide ion accompanies the carbenium ion. This observation is explained most simply by the assumption that this halide ion is not involved in the deprotonation step forming the C=C double bond.
A Wagner-Meerwein rearrangement can be part of the isomerization of an alkyl halide (Figure 14.4). For example, 1 -bromopropane isomerizes quantitatively to 2-bromopropane under Friedel-Crafts conditions. The [l,2]-shift A — B involved in this reaction again is an H atom shift. In contrast to the thermoneutral isomerization between carbenium ions A and B of Figure 14.3, in the present case an energy gain is associated with the formation of a secondary carbenium ion from a primary carbenium ion. Note, however, that the different stabilities of the carbenium ions are not responsible for the complete isomerization of 1-bromopropane into 2-bromopropane. The position of this isomerization equilibrium is determined by thermodynamic control at the level of the alkyl halides. 2-Bromopropane is more stable than 1-bromopropane and therefore formed exclusively. [Pg.599]


See other pages where Carbenium ions halides is mentioned: [Pg.79]    [Pg.182]    [Pg.375]    [Pg.163]    [Pg.126]    [Pg.570]    [Pg.577]    [Pg.50]    [Pg.54]    [Pg.192]    [Pg.65]    [Pg.252]    [Pg.32]    [Pg.262]    [Pg.290]    [Pg.296]    [Pg.321]    [Pg.595]    [Pg.703]    [Pg.547]    [Pg.594]    [Pg.163]    [Pg.524]    [Pg.867]    [Pg.163]    [Pg.269]    [Pg.225]    [Pg.226]   
See also in sourсe #XX -- [ Pg.98 , Pg.99 ]




SEARCH



Carbenium

Carbenium ions

Halide ions

© 2024 chempedia.info