Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Epoxides carbenes from

Irradiation of oxaziridines results in extrusion of a carbonyl compound and formation of a nitrene in a reaction analogous to the generation of carbenes from epoxides. Oxaziridines can be formed photochemicaUy from nitrones or by oxidation of imines (Scheme 6.12). [Pg.206]

Titanium enolates.1 This Fischer carbene converts epoxides into titanium enolates. In the case of cyclohexene oxide, the product is a titanium enolate of cyclohexanone. But the enolates formed by reaction with 1,2-epoxybutane (equation I) or 2,3-epoxy butane differ from those formed from 2-butanone (Equation II). Apparently the reaction with epoxides does not involve rearrangement to the ketone but complexation of the epoxide oxygen to the metal and transfer of hydrogen from the substrate to the methylene group. [Pg.49]

Epoxide 96 was prepared such that photolytic conversion to the carbonyl ylide could be followed by an intramolecular cycloaddition with the tethered pendant olefin. However, photolysis of epoxide 96 led only to the formation of the regio-isomer 97 and the aldehyde 98 with no evidence of the corresponding cycloadduct. It was presumed that 97 arose from the ylide by thermal recyclization to the epoxide while 98 could form through the loss of a carbene from the ylide. The failure of the tethered alkene to undergo cycloaddition may have resulted from a poor trajectory for the cycloaddition. An extended analogue (99) allowed greater flexibility for the dipolarophile to adopt any number of conformations. Photolysis of epoxide 99 did lead to formation of the macrocyclic adduct 100, albeit in modest yields. [Pg.268]

Periplanone B is the most active sex pheromone found in the alimentary tract and excreta of the American cockroach Periplaneta americana. An elegant total synthesis of this germacrane sesquiterpene was achieved by SCHREIBER and SANTINI Cyclodecatrienone 1 is an obvious precursor. One of the oxirane rings arises from epoxidation of the enone CC double bond, the other from [2-1-1]-cycloaddition of a carbene to the carbonyl bond of the enone. Oxidation of the methylene group introduces the additional carbonyl double bond. The CC double bond of the enone results from an elimination of HX in the a-X-substituted cyclodecadienone 2, which, on its part, is feasible by substitution of cyclodecadienone 3. An electrocyclic opening of the cyclobutene ring in 4 provides the 1,3-diene substructure in 3. [Pg.135]

A series of [17]annulenes (70)—(73) are available from cyclo-octatetraene dimer by the action of a carbene/ an epoxidant/ or a nitrene followed by... [Pg.239]

More definitive evidence for the formation of an oxirene intermediate or transition state was presented recently by Cormier 80TL2021), in an extension of his earlier work on diazo ketones 77TL2231). This approach was based on the realization that, in principle, the oxirene (87) could be generated from the diazo ketones (88) or (89) via the oxocarbenes 90 or 91) or from the alkyne (92 Scheme 91). If the carbenes (90) (from 88) and (91) (from 89) equilibrate through the oxirene (87), and if (87) is also the initial product of epoxidation of (92), then essentially the same mixture of products (hexenones and ketene-derived products) should be formed on decomposition of the diazo ketones and on oxidation of the alkyne this was the case. [Pg.123]

To date, the most frequently used ligand for combinatorial approaches to catalyst development have been imine-type ligands. From a synthetic point of view this is logical, since imines are readily accessible from the reaction of aldehydes with primary or secondary amines. Since there are large numbers of aldehydes and amines that are commercially available the synthesis of a variety of imine ligands with different electronic and steric properties is easily achieved. Additionally, catalysts based on imine ligands are useful in a number of different catalytic processes. Libraries of imine ligands have been used in catalysts of the Strecker reaction, the aza-Diels-Alder reaction, diethylzinc addition, epoxidation, carbene insertions, and alkene polymerizations. [Pg.439]

On the contrary, a-lithiated epoxides have found wide application in syntheses . The existence of this type of intermediate as well as its carbenoid character became obvious from a transannular reaction of cyclooctene oxide 89 observed by Cope and coworkers. Thus, deuterium-labeling studies revealed that the lithiated epoxide 90 is formed upon treatment of the oxirane 89 with bases like lithium diethylamide. Then, a transannular C—H insertion occurs and the bicyclic carbinol 92 forms after protonation (equation 51). This result can be interpreted as a C—H insertion reaction of the lithium carbenoid 90 itself. On the other hand, this transformation could proceed via the a-alkoxy carbene 91. In both cases, the release of strain due to the opening of the oxirane ring is a significant driving force of the reaction. [Pg.868]

As with many polymers, polyisoprene exhibits non-Newtonian flow behavior at shear rates normally used for processing. The double bond can undergo most of the typical reactions such as carbene additions, hydrogenation, epoxidation, ozonolysis, hydrohalogena-tion, and halogenation. As with the case of the other 1,4-diene monomers, many copolymers are derived from polyisoprene or isoprene itself. [Pg.163]

Alkylidene derivatives of phthalic thioanhydride are formed as shown in Scheme 160. Reaction of phthalic thioanhydride with hot triethyl phosphite produces trafts-S -bithioph-thalide (457), probably via the carbene and phosphorane (Scheme 161) (72AHC(14)331>. Support for this mechanism stems from the fact that brief treatment of phthalic thioanhydride with triethyl phosphite in the presence of phthalic anhydride gives (458) in the presence of benzaldehyde the same reaction leads to the benzylidene derivative (456). An alternative mechanism has also been suggested, in which the penultimate step is the formation of an epoxide, which is deoxygenated to yield the product (72AHC(14)331>. [Pg.825]

The formation of epoxides is a well-investigated synthetic problem and two approaches, either from a double bond system by transfer of oxygen starting from an alkene, or carbene transfer to a carbonyl group, have attracted much interest. The use of the CpFe(CO)2+ fragment was also investigated by Hossain and coworkers with a view to its use for the synthesis of epoxides (Scheme 9.15) [30, 31]. However, the CpFe(CO)2+ fragment not only catalyzes the carbene transfer, but also acts as... [Pg.251]


See other pages where Epoxides carbenes from is mentioned: [Pg.527]    [Pg.808]    [Pg.527]    [Pg.91]    [Pg.197]    [Pg.527]    [Pg.296]    [Pg.496]    [Pg.527]    [Pg.296]    [Pg.305]    [Pg.97]    [Pg.160]    [Pg.124]    [Pg.155]    [Pg.237]    [Pg.263]    [Pg.287]    [Pg.208]    [Pg.75]    [Pg.274]    [Pg.123]    [Pg.250]    [Pg.124]    [Pg.124]    [Pg.61]    [Pg.352]    [Pg.262]    [Pg.86]    [Pg.119]   
See also in sourсe #XX -- [ Pg.94 ]




SEARCH



Carbenes epoxides

From carbenes

From epoxides

© 2024 chempedia.info