Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbene reactions stoichiometric

SCHEME 93. Stoichiometric reactions relevant to catalytic carbene reaction. [Pg.305]

These carbene (or alkylidene) complexes are used as either stoichiometric reagents or catalysts for various transformations which are different from those of free carbenes. Reactions involving the carbene complexes of W, Mo, Cr, Re, Ru, Rh, Pd, Ti and Zr are known. Carbene complexes undergo the following transformations (i) alkene metathesis (ii) alkene cyclopropanation (iii) carbonyl alkenation (iv) insertion to C—H, N—H and O—H bonds (v) ylide formation and (vi) dimerization. Their chemoselectivity depends mainly on the metal species and ligands, as discussed in the following sections. [Pg.305]

A transmetalation of the styrylcarbene chromium complex 62 in the presence of stoichiometric amounts of [Ni(cod)2] to give the nickel carbene intermediate 63 was applied to the synthesis of Cr(CO)3-coordinated cycloheptatriene 64 upon reaction with terminal alkynes [57] (Scheme 37). The formation of pen-tacarbonyl(acetonitrile)chromium is expected to facilitate the metal exchange. [Pg.142]

Ruthenium porphyrin complexes are also active in cyclopropanation reactions, with both stoichiometric and catalytic carbene transfer reactions observed for Ru(TPP)(=C(C02Et)2> with styrene. Ru(Por)(CO)orRu(TMP)(=0)2 catalyzed the cyclopropanation of styrene with ethyidiazoacetate, with aiiti.syn ratios of 13 1... [Pg.277]

The protocol of the allylic alkylation, which proceeds most likely via a c-allyl-Fe-intermediate, could be further improved by replacing the phosphine ligand with an M-heterocyclic carbene (NHC) (Scheme 21) [66]. The addition of a ferf-butyl-substituted NHC ligand 86 allowed for full conversion in the exact stoichiometric reaction between allyl carbonate and pronucleophile. Various C-nucleophiles were allylated in good to excellent regioselectivities conserving the 71 bond geometry of enantiomerically enriched ( )- and (Z)-carbonates 87. Even chirality and prochirality transfer was observed (Scheme 21) [67]. [Pg.198]

The q1-coordinated carbene complexes 421 (R = Ph)411 and 422412) are rather stable thermally. As metal-free product of thermal decomposition [421 (R = Ph) 110 °C, 422 PPh3, 105 °C], one finds the formal carbene dimer, tetraphenylethylene, in both cases. Carbene transfer from 422 onto 1,1-diphenylethylene does not occur, however. Among all isolated carbene complexes, 422 may be considered the only connecting link between stoichiometric diazoalkane reactions and catalytic decomposition [except for the somewhat different results with rhodium(III) porphyrins, see above] 422 is obtained from diazodiphenylmethane and [Rh(CO)2Cl]2, which is also known to be an efficient catalyst for cyclopropanation and S-ylide formation with diazoesters 66). [Pg.240]

The currently known carbometallation chemistry of the group 6 metals is dominated by the reactions of metal-carbene and metal-carbyne complexes with alkenes and alkynes leading to the formation of four-membered metallacycles, shown in Scheme 1. Many different fates of such species have been reported, and the readers are referred to reviews discussing these reactions.253 An especially noteworthy reaction of this class is the Dotz reaction,254 which is stoichiometric in Cr in essentially all cases. Beyond the formation of the four-membered metallacycles via carbometallation, metathesis and other processes that may not involve carbometallation appear to dominate. It is, however, of interest to note that metallacyclobutadienes containing group 6 metals can undergo the second carbometallation with alkynes to produce metallabenzenes, as shown in Scheme 53.255 As the observed conversion of metallacyclobutadienes to metallabenzenes can also proceed via a Diels-Alder-like... [Pg.284]

Barluenga and co-workers reported a novel [2 + 2 + 2 + 1 (-reaction based on the use of two metals, the nickel-mediated [2 + 2 + 2 + l]-reaction of Fischer carbenes with alkynes (Scheme 73).142 While, at present, this process requires the stoichiometric use of both metals, it is highly regioselective, affords good yields, and is a novel route to seven-membered rings. [Pg.639]

Brown, Frederick J., Stoichiometric Reactions of Transition Metal Carbene... [Pg.627]

Closely related to the ring-closing metathesis of enynes (Section 3.2.5.6), catalyzed by non-heteroatom-substituted carbene complexes, is the reaction of stoichiometric amounts of Fischer-type carbene complexes with enynes [266,308 -315] (for catalytic reactions, see [316]). In this reaction [2 + 2] cycloaddition of the carbene complex and the alkyne followed by [2 -t- 2] cycloreversion leads to the intermediate formation of a non-heteroatom-substituted, electrophilic carbene complex. This intermediate, unlike the corresponding nucleophilic carbene... [Pg.46]

In addition to catalytically active transition metal complexes, several stable, electrophilic carbene complexes have been prepared, which can be used to cyclopropanate alkenes (Figure 3.32). These complexes have to be used in stoichiometric quantities to achieve complete conversion of the substrate. Not surprisingly, this type of carbene complex has not attained such broad acceptance by organic chemists as have catalytic cyclopropanations. However, for certain applications the use of stoichiometric amounts of a transition metal carbene complex offers practical advantages such as mild reaction conditions or safer handling. [Pg.105]

Because electrophilic carbene complexes can cyclopropanate alkenes under mild reaction conditions (Table 3.1) [438,618-620], these complexes can serve as stoichiometric reagents for the cyclopropanation of organic compounds. Thoroughly investigated carbene complexes for this purpose are neutral complexes of the type (C0)5M=CR2 (M Cr, Mo, W) and cationic iron(IV) carbene complexes. The mechanism of cyclopropanation by electrophilic carbene complexes has been discussed in Section 1.3. [Pg.106]

All the metathesis reactions discussed in this section require only catalytic amounts of a carbene complex. The use of stoichiometric quantities of carbene complexes in organic synthesis is limited to cheap metals such as, e.g., titanium. [Pg.165]

Apart from the tandem metathesis/carbonyl o[efination reaction mediated by the Tebbe reagent (Section 3.2.4.2), few examples of the use of stoichiometric amounts of Schrock-type carbene complexes have been reported. A stoichiometric variant of cross metathesis has been described by Takeda in 1998 [634]. Titanium carbene complexes, generated in situ from dithioacetals, Cp2TiCl2, magnesium, and triethylphosphite (see Experimental Procedures 3.2.2 and 3.2.6), were found to undergo stoichiometric cross-metathesis reactions with allylsilanes [634]. The scope of this reaction remains to be explored. [Pg.167]

Acceptor-substituted carbene complexes are highly reactive intermediates, capable of transforming organic compounds in many different ways. Typical reactions include insertion into o-bonds, cyclopropanation, and ylide formation. Generally, acceptor-substituted carbene complexes are not isolated and used in stoichiometric amounts, but generated in situ from a carbene precursor and transition metal derivative. Usually only catalytic quantities of a transition metal complex are required for complete conversion of a carbene precursor via an intermediate carbene complex into the final product. [Pg.178]

The catalytic preparation of esters and amides under mild and waste free reaction conditions using readily available starting materials is a desirable goal. The first redox process of this type using heterocyclic carbenes was reported by Castells and co-workers in 1977 in which aldehydes were oxidized to esters in one-pot in the presence of nitrobenzene [104], Furfural 169 is converted into methyl 2-furoate 170 in 79% yield Eq. 15. Nitrobenzene is the presumed stoichiometric oxidant for the oxidation of the nucleophilic alkene XXX to the acyl azolium XXXI by successive electron transfer events. The authors observe nitrosobenzene as a stoichiometric byproduct. This type of reactivity is also observed when cyanide is used as the catalyst. Miyashita has expanded the scope of this transformation using imida-zolylidene carbenes [105-107]. [Pg.109]

In 1994, Quayle et al. reported the application of this cyclic Fischer-carbene synthesis from 3-butynols to spirolactone synthesis, although the process was stepwise and a stoichiometric amount of the complex was employed [17]. The key transformation was the chromium or tungsten carbene complex formation followed by the CAN oxidation of the complex to give y-lactone. The reaction was further applied to the synthesis of andirolactone and muricatacin, the former being shown in Scheme 5.14. [Pg.167]

Metal allenylidene complexes (M=C=C=CR2) are organometallic species having a double bond betv een a metal and a carbon, such as metal carbenes (M=CR2), metal vinylidenes (M=C=CR2), and other metal cumulenylidenes like M=C=C= C=CR2 [1]. These metal-carbon double bonds are reactive enough to be employed for many organic transformations, both catalytically and stoichiometrically [1, 2]. Especially, the metathesis of alkenes via metal carbenes may be one ofthe most useful reactions in the field of recent organic synthesis [3], vhile metal vinylidenes are also revealed to be the important species in many organic syntheses such as alkyne polymerization and cycloaromatization [4, 5]. [Pg.217]

The stoichiometric reaction of propyl propargylic ether with the similar ruthenium precursor XVIIIb (X OTf) led to the formation of the same isolable carbene-ruthenium complex XXb and propanal (Scheme 8.14). [Pg.264]

This stoichiometric reaction constitutes a new contribution to vinylidene chemistry and a novel method to generate alkenylcarbene ligand from simple propargyl alkyl ethers rather than via activation of cyclopropenes [4] or by stoichiometric activation of butadiene [6[. When linked to a suitable metal-ligand moiety this carbene constitutes an alkene metathesis initiator. [Pg.264]


See other pages where Carbene reactions stoichiometric is mentioned: [Pg.255]    [Pg.61]    [Pg.277]    [Pg.50]    [Pg.113]    [Pg.208]    [Pg.325]    [Pg.23]    [Pg.234]    [Pg.240]    [Pg.377]    [Pg.291]    [Pg.291]    [Pg.86]    [Pg.355]    [Pg.106]    [Pg.127]    [Pg.91]    [Pg.35]    [Pg.153]    [Pg.75]    [Pg.104]    [Pg.61]    [Pg.217]    [Pg.302]    [Pg.892]    [Pg.16]    [Pg.187]   
See also in sourсe #XX -- [ Pg.203 ]

See also in sourсe #XX -- [ Pg.203 ]




SEARCH



Carbene reactions

Carbenes reactions

Stoichiometric reactions carbene complexes

Stoichiometrical reactions

© 2024 chempedia.info