Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Carbamates reduction

The ability of LLA1 H4 to reduce carbamates to labeled methyl groups, such as in the synthesis of [iV-methyl- H]nortriptylin (274) , provides an alternative to Af-[ H]methyl-ation with [ HJmethyl iodide for the preparation of high specific activity tracers for invitm binding studies (see also Chapter 4.4.3). An example of a uniquely usefiil carbamate reduction is that of O-benzyl carbamate to give [ HJmethylamine at a specific activity of >70 Ci/mmol. The latter was further reacted with 3-azido-4-chlorophenylisothiocyanate to furnish the thiourea 275. an efficient photoaffinity probe for the urea carrier . [Pg.171]

Because an excess of ammonia is fed to the reactor, and because the reactions ate reversible, ammonia and carbon dioxide exit the reactor along with the carbamate and urea. Several process variations have been developed to deal with the efficiency of the conversion and with serious corrosion problems. The three main types of ammonia handling ate once through, partial recycle, and total recycle. Urea plants having capacity up to 1800 t/d ate available. Most advances have dealt with reduction of energy requirements in the total recycle process. The economics of urea production ate most strongly influenced by the cost of the taw material ammonia. When the ammonia cost is representative of production cost in a new plant it can amount to more than 50% of urea cost. [Pg.220]

Industrially, polyurethane flexible foam manufacturers combine a version of the carbamate-forming reaction and the amine—isocyanate reaction to provide both density reduction and elastic modulus increases. The overall scheme involves the reaction of one mole of water with one mole of isocyanate to produce a carbamic acid intermediate. The carbamic acid intermediate spontaneously loses carbon dioxide to yield a primary amine which reacts with a second mole of isocyanate to yield a substituted urea. [Pg.452]

Attempts have been made to develop methods for the production of aromatic isocyanates without the use of phosgene. None of these processes is currently in commercial use. Processes based on the reaction of carbon monoxide with aromatic nitro compounds have been examined extensively (23,27,76). The reductive carbonylation of 2,4-dinitrotoluene [121 -14-2] to toluene 2,4-diaLkylcarbamates is reported to occur in high yield at reaction temperatures of 140—180°C under 6900 kPa (1000 psi) of carbon monoxide. The resultant carbamate product distribution is noted to be a strong function of the alcohol used. Mitsui-Toatsu and Arco have disclosed a two-step reductive carbonylation process based on a cost effective selenium catalyst (22,23). [Pg.454]

Acylation. Reaction conditions employed to acylate an aminophenol (using acetic anhydride in alkaU or pyridine, acetyl chloride and pyridine in toluene, or ketene in ethanol) usually lead to involvement of the amino function. If an excess of reagent is used, however, especially with 2-aminophenol, 0,A/-diacylated products are formed. Aminophenol carboxylates (0-acylated aminophenols) normally are prepared by the reduction of the corresponding nitrophenyl carboxylates, which is of particular importance with the 4-aminophenol derivatives. A migration of the acyl group from the O to the N position is known to occur for some 2- and 4-aminophenol acylated products. Whereas ethyl 4-aminophenyl carbonate is relatively stable in dilute acid, the 2-derivative has been shown to rearrange slowly to give ethyl 2-hydroxyphenyl carbamate [35580-89-3] (26). [Pg.310]

Bourbon Distillation. The basic distiUation system for the production of bourbon and other straight whiskeys consists of a beer stiU and a beer heater, thumper, or doubler (Fig. 4). The whiskey stiU consists of between 14 and 21 stripping trays. The upper portion of the stiU is fitted with either a bubble cap section or a section packed with copper rings to enhance the removal of unwanted flavors and ethyl carbamate precursors. The reduction of carbamate precursors requites strict adherence to a cleaning protocol with a 5% caustic solution as often as twice a week. [Pg.85]

H-Benzimidazole, 2,2-pentamethylene-reduction, 5, 423 Benzimidazole-2-carbaldehyde oximes, 5, 436 Benzimidazolecarbaldehydes oxidation, 5, 437 Benzimidazole-2-carbamates 5-substituted as anthelmintics, 1, 202 Benzimidazole-1-carboxylic acid, 2-amino-methyl ester reactions, 5, 453... [Pg.538]

The dithioacetal is stable to catalytic reduction (H2/Pd-C, CH3OH-HOAC, 12 h, the conditions used to cleave a p-nitrobenzyl carbamate). ... [Pg.292]

Many carbamates have been used as protective groups. They are arranged in this chapter in order of increasing complexity of stmcture. The most useful compounds do not necessarily have the simplest stmctures, but are /-butyl (BOC), readily cleaved by acidic hydrolysis benzyl (Cbz or Z), cleaved by catalytic hy-drogenolysis 2,4-dichlorobenzyl, stable to the acid-catalyzed hydrolysis of benzyl and /-butyl carbamates 2-(biphenylyl)isopropyl, cleaved more easily than /-butyl carbamate by dilute acetic acid 9-fluorenylmethyl, cleaved by /3-elimination with base isonicotinyl, cleaved by reduction with zinc in acetic acid 1-adamantyl, readily cleaved by trifluoroacetic acid and ally], readily cleaved by Pd-catalyzed isomerisation. [Pg.316]

A piperidinyl carbamate, stable to aqueous alkali and to cold acid (30% HBr, 25°. several hours), is best cleaved by reduction. [Pg.334]

Sulfonamides (R2NSO2R ) are prepared from an amine and sulfonyl chloride in the presence of pyridine or aqueous base. The sulfonamide is one of the most stable nitrogen protective groups. Arylsulfonamides are stable to alkaline hydrolysis, and to catalytic reduction they are cleaved by Na/NH3, Na/butanol, sodium naphthalenide, or sodium anthracenide, and by refluxing in acid (48% HBr/cat. phenol). Sulfonamides of less basic amines such as pyrroles and indoles are much easier to cleave than are those of the more basic alkyl amines. In fact, sulfonamides of the less basic amines (pyrroles, indoles, and imidazoles) can be cleaved by basic hydrolysis, which is almost impossible for the alkyl amines. Because of the inherent differences between the aromatic — NH group and simple aliphatic amines, the protection of these compounds (pyrroles, indoles, and imidazoles) will be described in a separate section. One appealing proj>erty of sulfonamides is that the derivatives are more crystalline than amides or carbamates. [Pg.379]

The common impurities found in amines are nitro compounds (if prepared by reduction), the corresponding halides (if prepared from them) and the corresponding carbamate salts. Amines are dissolved in aqueous acid, the pH of the solution being at least three units below the pKg value of the base to ensure almost complete formation of the cation. They are extracted with diethyl ether to remove neutral impurities and to decompose the carbamate salts. The solution is then made strongly alkaline and the amines that separate are extracted into a suitable solvent (ether or toluene) or steam distilled. The latter process removes coloured impurities. Note that chloroform cannot be used as a solvent for primary amines because, in the presence of alkali, poisonous carbylamines (isocyanides) are formed. However, chloroform is a useful solvent for the extraction of heterocyclic bases. In this case it has the added advantage that while the extract is being freed from the chloroform most of the moisture is removed with the solvent. [Pg.63]

Carbonates, like esters, can be cleaved by basic hydrolysis, but generally are much less susceptible to hydrolysis because of the resonance effect of the second oxygen. In general, carbonates are cleaved by taking advantage of the properties of the second alkyl substituent (e.g., zinc reduction of the 2,2,2-trichloroethyl carbonate). The reagents used to introduce the carbonate onto alcohols react readily with amines as well. As expected, basic hydrolysis of the resulting carbamate is considerably more difficult than basic hydrolysis of a carbonate. [Pg.179]

The carbamate, prepared from the 4-nitrophenyl carbonate, is cleaved by reduction with dithiothreitol (DTT) and TEA to give the aniline, which triggers fragmentation, releasing the amine. ... [Pg.543]

The carbamates, derived from the reaction of 8-aminoquinoline with phenyl or ethyl chloroformate, upon reduction with NaBH4 gave the... [Pg.143]

Treatment of piperidine with nitrous acid affords the N-nitroso derivative (190) reduction gives the corresponding hydrazine (191). Condensation of this intermediate with the carbamate (192) obtained from p-toluenesulfonamide leads to the oral hypoglycemic agent tolazemide (193). In a similar vein, reaction of the hydrazine obtained by the same sequence from azepine (194) with the carbamate, 188, gives azepinamide (195). ... [Pg.137]

From intermediate 28, the construction of aldehyde 8 only requires a few straightforward steps. Thus, alkylation of the newly introduced C-3 secondary hydroxyl with methyl iodide, followed by hydrogenolysis of the C-5 benzyl ether, furnishes primary alcohol ( )-29. With a free primary hydroxyl group, compound ( )-29 provides a convenient opportunity for optical resolution at this stage. Indeed, separation of the equimolar mixture of diastereo-meric urethanes (carbamates) resulting from the action of (S)-(-)-a-methylbenzylisocyanate on ( )-29, followed by lithium aluminum hydride reduction of the separated urethanes, provides both enantiomers of 29 in optically active form. Oxidation of the levorotatory alcohol (-)-29 with PCC furnishes enantiomerically pure aldehyde 8 (88 % yield). [Pg.196]

This ring system could be prepared by building either of the two heterocycles and then doing an annulation. Thus, cyclization of ethyl o-nitrophenylhydrazonocyanoacetyl carbamate 552 afforded 553. Reduction of 553 by the action of iron(II) sulfate gave 554, which on acid hydrolysis gave 558. Cyclization of o-aminophenyl derivatives 554 and 558 to 555 and 559, respectively, was effected (77CCC894) by treatment with acid. Phthalimido derivatives of 554 could also be cyclized to this... [Pg.106]

Inherent in the reduction of asymmetrically substituted cyclic imides is the problem of regiose-lectivity. Imides, in which one carbonyl group is part of a (thio)carbamate or urea function, usually show complete chemoselectivity for reduction of the other carbonyl group, indicated with an arrow. [Pg.809]

A polarographic study revealed one oxidation process to occur in acetone solution (59). The reduction waves reported have to be ascribed to the reduction of mercury dithio-carbamates, formed by a reaction of the electrode material (60). [Pg.96]

Another carbamate protecting group is 2,2,2-trichloroethyoxycarbonyl, known as Troc. 2,2,2-Trichloroethylcarbamates can be reductively cleaved by zinc.220... [Pg.268]

Allyl carbamates also can serve as amino-protecting groups. The allyloxy group is removed by Pd-catalyzed reduction or nucleophilic substitution. These reactions involve formation of the carbamic acid by oxidative addition to the palladium. The allyl-palladium species is reductively cleaved by stannanes,221 phenylsilane,222 formic acid,223 and NaBH4,224 which convert the allyl group to propene. Reagents... [Pg.268]


See other pages where Carbamates reduction is mentioned: [Pg.135]    [Pg.787]    [Pg.134]    [Pg.315]    [Pg.581]    [Pg.135]    [Pg.787]    [Pg.134]    [Pg.315]    [Pg.581]    [Pg.76]    [Pg.178]    [Pg.179]    [Pg.311]    [Pg.101]    [Pg.120]    [Pg.556]    [Pg.403]    [Pg.178]    [Pg.232]    [Pg.357]   
See also in sourсe #XX -- [ Pg.88 , Pg.282 ]

See also in sourсe #XX -- [ Pg.254 ]

See also in sourсe #XX -- [ Pg.8 , Pg.254 ]

See also in sourсe #XX -- [ Pg.8 , Pg.254 ]




SEARCH



Alkyl benzyl carbamates, reduction

Carbamates benzyl, reduction

Carbamates, reduction with

Reduction of carbamates

© 2024 chempedia.info