Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Calcium carbonate depth

Biogenic Ma.teria.ls, Deep ocean calcareous or siUceous oo2es are sediments containing >30% of biogenic material. Foraminifera, the skeletal remains of calcareous plankton, are found extensively in deep equatorial waters above the calcium carbonate compensation depth of 4000 to 5000 m. [Pg.287]

Fillers (calcium carbonate, calcium sulfate, aluminum oxide, bentonites, wood flour) increase the solid content of the dispersion. They are added up to 50%, based on PVAc. The purpose of the addition is the reduction of the penetration depth, provision of thixotropic behavior of the adhesive, gap filling properties and the reduction of the costs. Disadvantage can be the increase of the white point and a possible higher tool wear. [Pg.1078]

The solubility of calcite and aragonite increases with increasing pressure and decreasing temperature in such a way that deep waters are undersaturated with respect to calcium carbonate, while surface waters are supersaturated. The level at which the effects of dissolution are first seen on carbonate shells in the sediments is termed the lysocline and coincides fairly well with the depth of the carbonate saturation horizon. The lysocline commonly lies between 3 and 4 km depth in today s oceans. Below the lysocline is the level where no carbonate remains in the sediment this level is termed the carbonate compensation depth. [Pg.292]

I consider a system in which organic matter is oxidized at a steady rate that is a specified function of depth in uniform calcium carbonate sediments. The oxidation of organic matter increases the total dissolved carbon in the pore water of the sediment. The resultant increase in acidity causes the dissolution of calcium carbonate and a consequent increase in alkalinity as well as another increase in total dissolved carbon. The total dissolved carbon and alkalinity are transported by diffusion between different depths in the sediment. [Pg.151]

Figure 8-2 shows the depth profiles of the saturation index omegadel), the solution rate, and the respiration rate. At the shallowest depths, the saturation index changes rapidly from its supersaturated value at the sediment-water interface, corresponding to seawater values of total dissolved carbon and alkalinity, to undersaturation in the top layer of sediment. Corresponding to this change in the saturation index is a rapid and unresolved variation in the dissolution rate. Calcium carbonate is precipitating... [Pg.156]

Figure 8-10 shows the first 200 years of evolution of the concentrations at the same depths as plotted in Figure 8-9. The concentrations of both total carbon and calcium at a 500-centimeter depth decrease at first and then increase. This decrease occurs because I used starting values equal to seawater values. The waters were initially supersaturated and started out by precipitating calcium carbonate. This initial precipitation was overwhelmed at the shallower depths by the rapid addition of carbon as a result of respiration. Figure 8-10 shows the first 200 years of evolution of the concentrations at the same depths as plotted in Figure 8-9. The concentrations of both total carbon and calcium at a 500-centimeter depth decrease at first and then increase. This decrease occurs because I used starting values equal to seawater values. The waters were initially supersaturated and started out by precipitating calcium carbonate. This initial precipitation was overwhelmed at the shallower depths by the rapid addition of carbon as a result of respiration.
Calcium carbonate solubility is also temperature and pressure dependent. Pressure is a 6r more important fector than temperature in influencing solubility. As illustrated in Table 15.1, a 20°C drop in temperature boosts solubility 4%, whereas the pressure increase associated with a 4-km increase in water depth increases solubility 200-fold. The large pressure effect arises from the susceptibility of the fully hydrated divalent Ca and CO ions to electrostriction. Calcite and aragonite are examples of minerals whose solubility increases with decreasing temperature. This unusual behavior is referred to as retrograde solubility. Because of the pressure and temperature effects, calcium carbonate is fer more soluble in the deep sea than in the surfece waters (See the online appendix on the companion website). [Pg.382]

Although surfece waters are supersaturated with respect to calcium carbonate, abiogenic precipitation is imcommon, probably because of unfevorable kinetics. (The relatively rare formation of abiogenic calcite is discussed further in Chapter 18.) Marine organisms are able to overcome this kinetic barrier because they have enzymes that catalyze the precipitation reaction. Because fl declines with depth, organisms that deposit calcareous shells in deep waters, such as benthic foraminiferans, must expend more energy to create their hard parts as compared to surfece dwellers. [Pg.395]

North Atlantic to 500 m in the North Pacific. This reflects an increasing addition of CO2 to deep waters as meridional overturning circulation moves them from the Atlantic to the Indian and then to the Pacific Ocean. Thus, as a water mass ages, it becomes more corrosive to calcium carbonate. Since aragonite is more soluble than calcite, its saturation horizon lies at shallower depths, rising from 3000 m in the North Atlantic to 200 m in the North Pacific. [Pg.396]

On the opposite end of the spectrum, thermodynamics cannot explain why some PIC can sink through undersaturated waters without dissolving to accumulate on the seafloor. This is a widespread phenomenon as evidenced by the spatial %CaCOj gradients seen in the surface sediments (Figure 15.5). If the saturation horizon dictated the survival of sinking and accumulating PIC, a sharp depth cutoff should exist below which calcium carbonate is absent from the surface sediment. The importance of this kinetic barrier to dissolution is also seen in the relatively high fraction of surfece-water PIC (20 to 25%) that accumulates in the sediments as compared to the low fraction of surfece-water POC (1%). [Pg.398]

Parameters influencing the distribution of calcium carbonate with increasing water depth in equatorial Pacific sediment. Note that fi is reported as a percentage (%). Source From van Andel, Tj. H., et al. (1975). Cenozoic History and Paleoceanography of the Central Equatorial Pacific Ocean, Geological Society of America, Boulder, CO, p. 40. [Pg.399]

In contrast to calcium carbonate, all seawater is undersaturated with respect to BSi. As shown in Table 16.1, the imdersaturation is very large and increases with depth because the solubility of BSi increases with pressure. Thus, all siliceous hard parts are subject to dissolution. Nevertheless, about 25% of the BSi created in the surfece waters survives the trip to the seafloor via pelagic sedimentation. Direct observations of this transport... [Pg.409]

Calcite compensation depth See Calcium carbonate compensation depth. [Pg.868]

Calcium carbonate compensation depth (CCD) The depth below which calcium carbonate is not found in marine sediments due to its dissolution. [Pg.868]

Carbonate compensation The ocean s response to perturbations through shifts in its carbonate chemistry. These shifts require changes in the carbonate ion concentration that change the depth of the calcium carbonate compensation depth and hence lead to changes in the burial rate of carbon as biogenic calcium carbonate. [Pg.869]

Lysocline The depth at which shell dissolution starts to have a detectable impact on the calcium carbonate content of the surface sediments. [Pg.879]

Saturation horizon The depth range over which seawater is saturated with respect to calcium carbonate, i.e., D = 1. At depths below the saturation horizon (D < 1), calcium carbonate will spontaneously dissolve if exposed to the seawater for a sufficient period of time. [Pg.887]

Calcium Carbonate Equilibria. Values of the ion product, (Ca2+) (CO32 ), are plotted in Figure 1 as a function of temperature. These values represent samples from Lake Erie and Lake Ontario for all depths... [Pg.253]

Hudson, J. D. Speculations on the depth relations of calcium carbonate solution in recent and ancient seas. Mar. GeoL 5, 473-480 (1967). [Pg.93]

It should be kept in mind that, in spite of these major variations in the CO2-carbonic acid system, virtually all surface seawater is supersaturated with respect to calcite and aragonite. However, variations in the composition of surface waters can have a major influence on the depth at which deep seawater becomes undersaturated with respect to these minerals. The CO2 content of the water is the primary factor controlling its initial saturation state. The productivity and temperature of surface seawater also play major roles, in determining the types and amounts of biogenic carbonates that are produced. Later it will be shown that there is a definite relation between the saturation state of deep seawater, the rain rate of biogenic material and the accumulation of calcium carbonate in deep sea sediments. [Pg.138]

As previously mentioned, the primary processes responsible for variations in the deep sea C02-carbonic acid system are oxidative degradation of organic matter, dissolution of calcium carbonate, the chemistry of source waters and oceanic circulation patterns. Temperature and salinity variations in deep seawaters are small and of secondary importance compared to the major variations in pressure with depth. Our primary interest is in how these processes influence the saturation state of seawater and, consequently, the accumulation of CaC03 in deep sea sediments. Variations of alkalinity in deep sea waters are relatively small and contribute little to differences in the saturation state of deep seawater. [Pg.140]


See other pages where Calcium carbonate depth is mentioned: [Pg.269]    [Pg.230]    [Pg.44]    [Pg.270]    [Pg.338]    [Pg.24]    [Pg.151]    [Pg.151]    [Pg.156]    [Pg.162]    [Pg.169]    [Pg.179]    [Pg.386]    [Pg.73]    [Pg.310]    [Pg.383]    [Pg.392]    [Pg.398]    [Pg.401]    [Pg.401]    [Pg.468]    [Pg.105]    [Pg.58]    [Pg.732]    [Pg.269]    [Pg.254]    [Pg.144]    [Pg.146]   


SEARCH



Calcium carbonate

© 2024 chempedia.info