Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Calcium carbonate as support for

Calcium carbonate as support for palladium catalyst, 46, 90 Calcium hydride, 46, 58 D,L-Camphor, sulfonation to d,l-10-camphorsulfonic acid, 46,12 10-Camphorchlorosulfoxide, 46, 56 d,l-10-Camphorsulfonic acid, 46,12 conversion to acid chloride, 45,14 10-Camphorsulfonyl chloride, 45, 56 d,l-10-Camphorsulfonyl chloride,... [Pg.123]

Calcium carbonate as support for palladium catalyst, 46, 90 Calcium hydride, 46, 68 D,L-Camphor, sulfonation to d,l-10-camphorsulfonic acid, 46,12... [Pg.68]

This pure Z-alkene was needed for studies on the mechanism of a rearrangement reaction. In Chapter 24 you met catalytic hydrogenation as a means of reducing alkenes to alkanes, and we introduced Lindlar s catalyst (palladium and lead acetate on a support of calcium carbonate) as a means of controlling chemoselectivity so that alkynes could be reduced to alkenes. What we did not empha-... [Pg.818]

The most common catalyst for low- and medium-pressure hydrogenation is platinum. Platinum oxide is available from a number of suppliers and is converted to colloidal platinum in situ by hydrogenation. Palladium is another commonly used catalyst and is usually prepared on some inert support such as charcoal, barium sulfate, or calcium carbonate. The procedure for the preparation of these catalysts is given in Organic Syntheses. - A rhodium catalyst appears to be particularly effective in reducing aromatic compounds at low pressure and is available on an alumina support. ... [Pg.236]

Lindlar catalyst (Section 9 9) A catalyst for the hydrogenation of alkynes to as alkenes It is composed of palladium which has been poisoned with lead(II) acetate and quino line supported on calcium carbonate... [Pg.1288]

A great many materials have been used as catalyst supports in hydrogena-tion, but most of these catalyst have been in a quest for an improved system. The majority of catalyst supports are some form of carbon, alumina, or silica-alumina. Supports such as calcium carbonate or barium sulfate may give better yields of B in reactions of the type A- B- C, exemplified by acetylenes- cjs-olefins, apparently owing to a weaker adsorption of the intermediate B. Large-pore supports that allow ready escape of B may give better selectivities than smaller-pore supports, but other factors may influence selectivity as well. [Pg.4]

Many workers (5,6,7,87) have compared various metals for the selective hydrogenation of lower acetylenes to olefins, and it was always found that palladium was by far the most selective. This conclusion concurs with the usual synthetic experience, but under special circumstances other metals, such as platinum, may prove more useful (35,63). The catalyst support may also have an influence (21,65). Carbon, calcium carbonate, and barium sulfate are frequently used supports. Examples of some differences are noted later,... [Pg.53]

Platinum in a finely divided form is obtained by the in situ reduction of hydrated platinum dioxide (Adams catalyst) finely divided platinum may also be used supported on an inert carrier such as decolourising carbon. Finely divided palladium prepared by reduction of the chloride is usually referred to as palladium black. More active catalysts are obtained however when the palladium is deposited on decolourising carbon, barium or calcium carbonate, or barium sulphate. Finely divided ruthenium and rhodium, usually supported on decolourising carbon or alumina, may with advantage be used in place of platinum or palladium for some hydrogenation reactions. [Pg.88]

The non-pattemed CaCOj films could be observed to crystallize within 1 h by optical microscopy. However the patterned films stayed amorphous for 2-3 h under ambient conditions and were only completely crystalline after 24 h, which is probably due to the use of ethanol in the patterning procedure, as this is known to stabilize ACC (amorphous calcium carbonate). Subsequently cell culture experiments were performed and the results indicated that the CaCOj substrates support rat bone marrow stromal cell attachment, proliferation and differentiation into osteoblast and osteoclast-like cells. Moreover, mineral formation by the osteoblast-like cells was favored on the CaCOj films compared to the developed polymer films. Also, the osteoclast-like cells can degrade the CaC03 films. Therefore, these patterns of CaCOj films can be regarded as suitable 2D model substrates for bone cells. [Pg.264]

Much early work [21] involved the use of silver(I) fluoride, conveniently prepared from the oxide or carbonate with 40% hydrogen fluoride, for the exchange of single halogen atoms in alkyl halides [22] and other systems [23]. The use of calcium fluoride as a solid, inert support may increase the reactivity of silver fluoride [24] (Figure 3.1). [Pg.47]


See other pages where Calcium carbonate as support for is mentioned: [Pg.304]    [Pg.24]    [Pg.514]    [Pg.303]    [Pg.230]    [Pg.233]    [Pg.117]    [Pg.194]    [Pg.378]    [Pg.490]    [Pg.482]    [Pg.762]    [Pg.762]    [Pg.185]    [Pg.468]    [Pg.260]    [Pg.117]    [Pg.165]    [Pg.630]    [Pg.9]    [Pg.118]    [Pg.124]    [Pg.94]    [Pg.98]    [Pg.379]    [Pg.38]    [Pg.149]    [Pg.83]    [Pg.17]    [Pg.1498]   


SEARCH



Calcium carbonate

Calcium carbonate as support for palladium catalyst

Carbon support

Carbon supported

Carbonate supports

© 2024 chempedia.info