Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Calcium abundance

A curious circumstance, however, is that calcium appears to be about half as abundant as other alpha-process elements in galaxies. The causes are not clear, but observations indicate that calcium abundance in stars is directly correlated with the mass of the star and the velocity variation within the star at the time of formation of the calcium nuclei. Further studies of supernovae, with their complex velocity distributions, should inform theories of calcium nucleosynthesis. [Pg.121]

Some important details of the composition of plasma membranes will now be discussed. Calcium, abundantly present, plays an important part in membrane stabilization, and in controlling the pores. The stability of biological membranes is considerable as the following experiment shows. Membranes from... [Pg.190]

Calcium is a metallic element, fifth in abundance in the earth s crust, of which if forms more than 3%. It is an essential constituent of leaves, bones, teeth, and shells. Never found in nature uncombined, it occurs abundantly as limestone, gypsum, and fluorite. Apatite is the fluorophosphate or chlorophosphate of calcium. [Pg.47]

By experimentally determining the ratio of abundances of C and isotope peaks for CO2 dissolved in sea water at various temperatures, a graph can be drawn relating the solubility of CO2 compared with that of CO2 (the ratio described above). On extracting the CO2 from sediment containing the shells (calcium carbonate) of dead sea creatures by addition of acid, a ratio (R) of abundances of CO2 to CO2 can be measured. If this value is read from the graph, a temperature T is extrapolated, indicating the temperature of the sea at the time the sediment was laid down. Such experiments have shown that 10,000 years ago the temperature of the Mediterranean was much as it is now. [Pg.340]

One method for measuring the temperature of the sea is to measure this ratio. Of course, if you were to do it now, you would take a thermometer and not a mass spectrometer. But how do you determine the temperature of the sea as it was 10,000 years ago The answer lies with tiny sea creatures called diatoms. These have shells made from calcium carbonate, itself derived from carbon dioxide in sea water. As the diatoms die, they fall to the sea floor and build a sediment of calcium carbonate. If a sample is taken from a layer of sediment 10,000 years old, the carbon dioxide can be released by addition of acid. If this carbon dioxide is put into a suitable mass spectrometer, the ratio of carbon isotopes can be measured accurately. From this value and the graph of solubilities of isotopic forms of carbon dioxide with temperature (Figure 46.5), a temperature can be extrapolated. This is the temperature of the sea during the time the diatoms were alive. To conduct such experiments in a significant manner, it is essential that the isotope abundance ratios be measured very accurately. [Pg.341]

Calcium. Calcium is the fifth most abundant element in the earth s cmst. There is no foreseeable lack of this resource as it is virtually unlimited. Primary sources of calcium are lime materials and gypsum, generally classified as soil amendments (see Calcium compounds). Among the more important calcium amendments are blast furnace slag, calcitic limestone, gypsum, hydrated lime, and precipitated lime. Fertilizers that carry calcium are calcium cyanamide, calcium nitrate, phosphate rock, and superphosphates. In addition, there are several organic carriers of calcium. Calcium is widely distributed in nature as calcium carbonate, chalk, marble, gypsum, fluorspar, phosphate rock, and other rocks and minerals. [Pg.245]

Magnesium sulfate heptahydrate may be prepared by neutralization of sulfuric acid with magnesium carbonate or oxide, or it can be obtained directly from natural sources. It occurs abundantly as a double salt and can also be obtained from the magnesium salts that occur in brines used for the extraction of bromine (qv). The brine is treated with calcium hydroxide to precipitate magnesium hydroxide. Sulfur dioxide and air are passed through the suspension to yield magnesium sulfate (see Chemicals frombrine). Magnesium sulfate is a saline cathartic. [Pg.202]

The carbonate minerals that comprise limestone ate calcite [13397-26-7] (calcium carbonate), which is easily the most abundant mineral type aragonite [14791-73-2] (calcium carbonate) dolomite [17069-72-6] (double carbonate of calcium and magnesium) andmagnesite [13717-31 -5] (magnesium carbonate). Individual limstone types ate further described by many common names (1). Some of this nomenclature is repetitious and overlapping. The following terms ate in common use in Europe and the United States. [Pg.163]

Calcium. Calcium, the most abundant mineral element in mammals, comprises 1.5- -2.0 wt % of the adult human body, over 99 wt % of which... [Pg.375]

Phosphorus. Eighty-five percent of the phosphoms, the second most abundant element in the human body, is located in bones and teeth (24,35). Whereas there is constant exchange of calcium and phosphoms between bones and blood, there is very Httle turnover in teeth (25). The Ca P ratio in bones is constant at about 2 1. Every tissue and cell contains phosphoms, generally as a salt or ester of mono-, di-, or tribasic phosphoric acid, as phosphoHpids, or as phosphorylated sugars (24). Phosphoms is involved in a large number and wide variety of metaboHc functions. Examples are carbohydrate metaboHsm (36,37), adenosine triphosphate (ATP) from fatty acid metaboHsm (38), and oxidative phosphorylation (36,39). Common food sources rich in phosphoms are Hsted in Table 5 (see also Phosphorus compounds). [Pg.377]

Magnesium. In the adult human, 50—70% of the magnesium is in the bones associated with calcium and phosphoms. The rest is widely distributed in the soft tissues and body duids. Most of the nonbone Mg ", like K", is located in the intracellular duid where it is the most abundant divalent cation. Magnesium ion is efftcientiy retained by the kidney when the plasma concentration of Mg fads in this respect it resembles Na". The functions of Na", K", Mg ", and Ca " are interrelated so that a deficiencv of Mg " affects the metaboHsm of the other three ions (26). Foods rich in magnesium are listed in Table 9. [Pg.381]

Calcium Phosphates. The alkaline-earth phosphates are generally much less soluble than those of the alkaH metals. Calcium phosphates include the most abundant natural form of phosphoms, ie, apatites, Ca2Q(P0 3X2, where X = OH, F, Cl, etc. Apatite ores are the predominant basic raw material for the production of phosphoms and its derivatives. Calcium phosphates are the main component of bones and teeth. After sodium phosphates, the calcium salts are the next largest volume technical- and food-grade phosphates. Many commercial appHcations of the calcium phosphates depend on thek low solubiHties. [Pg.333]

Calcium [7440-70-2J, Ca, a member of Group 2 (IIA) of the Periodic Table between magnesium and strontium, is classified, together with barium and strontium, as an alkaline-earth metal and is the lightest of the three. Calcium metal does not occur free in nature however, in the form of numerous compounds, it is the fifth most abundant element constituting 3.63% of the earth s cmst. [Pg.399]

Calcium is readily abundant in the mammalian diet. A 70 kg human contains approximately 1200 g of calcium and has a daily intake of 1100 mg/day. There are no pubHshed exposure limits (38). Low levels of calcium in the blood, hypocalcemia, can lead to tetany high levels, hypercalcemia, can lead to coma and death. Calcium toxicity, above 160 mg/L in the blood, is not related to an excessive intake of calcium. [Pg.416]

Occurrence. Carbon monoxide is a product of incomplete combustion and is not likely to result where a flame bums in an abundant air supply, yet may result when a flame touches a cooler surface than the ignition temperature of the gas. Gas or coal heaters in the home and gas space heaters in industry have been frequent sources of carbon monoxide poisoning when not provided with effective vents. Gas heaters, though properly adjusted when installed, may become hazardous sources of carbon monoxide if maintained improperly. Automobile exhaust gas is perhaps the most familiar source of carbon monoxide exposure. The manufacture and use of synthesis gas, calcium carbide manufacture, distillation of coal or wood, combustion operations, heat treatment of metals, fire fighting, mining, and cigarette smoking represent additional sources of carbon monoxide exposure (105—107). [Pg.59]

Most abundant group of materials, composed of silicates of aluminium with sodium, potassium, calcium, and rarely barium. Most economically important mineral. Used for ceramics, glass, abrasive wheels, cements, insulation and fertilizer. [Pg.79]

Calcium, as noted above, is the fifth most abundant element in the earth s crust and hence the third most abundant metal after A1 and Fe. Vast sedimentary deposits of CaC03, which represent the fossilized remains of earlier marine life, occur over large parts of the earth s surface. The deposits are of two main... [Pg.109]

Many metals occur in crude oils. Some of the more abundant are sodium, calcium, magnesium, aluminium, iron, vanadium, and nickel. They are present either as inorganic salts, such as sodium and magnesium chlorides, or in the form of organometallic compounds, such as those of nickel and vanadium (as in porphyrins). Calcium and magnesium can form salts or soaps with carboxylic acids. These compounds act as emulsifiers, and their presence is undesirable. [Pg.19]

Although sodium carbonate is needed in the manufacture of glass, very little is found in nature. It is made using two very abundant chemicals, calcium carbonate (marble) and sodium chloride (salt). The process involves many steps, but the overall reaction is... [Pg.230]

Calcium (sixth most abundant element) is found in limestone, CaC03, and gypsum, CaS04-2H20. Bones are made up of calcium phosphate, Ca PO. ... [Pg.385]

Different minerals contain different metal cations to balance the -4 charge on the orthosilicate ion. Examples Include calcium silicate (Ca2 Si04), an important ingredient in cement, and zircon (ZrSi04), which is often sold as artificial diamond. One of the most prevalent minerals in the Earth s mantle is olivine, Af2(Si04), in which M is one or two of the abundant metal cations, Fe -, Mg -, and Mn +. [Pg.613]


See other pages where Calcium abundance is mentioned: [Pg.892]    [Pg.195]    [Pg.94]    [Pg.98]    [Pg.213]    [Pg.563]    [Pg.278]    [Pg.406]    [Pg.480]    [Pg.219]    [Pg.477]    [Pg.304]    [Pg.18]    [Pg.1183]    [Pg.277]    [Pg.293]    [Pg.206]    [Pg.222]    [Pg.460]    [Pg.482]    [Pg.555]    [Pg.281]    [Pg.62]    [Pg.892]    [Pg.112]    [Pg.67]    [Pg.69]    [Pg.258]   
See also in sourсe #XX -- [ Pg.5 , Pg.32 , Pg.330 ]

See also in sourсe #XX -- [ Pg.3 , Pg.88 , Pg.155 ]

See also in sourсe #XX -- [ Pg.7 ]

See also in sourсe #XX -- [ Pg.8 ]

See also in sourсe #XX -- [ Pg.3 , Pg.88 , Pg.155 ]

See also in sourсe #XX -- [ Pg.88 ]

See also in sourсe #XX -- [ Pg.305 , Pg.306 ]

See also in sourсe #XX -- [ Pg.349 , Pg.349 ]

See also in sourсe #XX -- [ Pg.911 ]




SEARCH



Calcium crustal abundance

Calcium solar abundance

© 2024 chempedia.info