Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Butyric Acid and Butanol-Forming Fermentations

Microorganisms have also been developed to produce alternative products, such as lactic acid [65], propane-1,3-diol [67], 3-hydroxypropionic acid [68], butane-2,3-diol [69] and numerous other intermediates. For instance, bacteria such as the Clostridium acetobutylicum ferment free sugars to C4 oxygenates such as butyric acid or butanol. They form the C4 oxygenates by Aldol condensation of the acetaldehyde intermediates. The Weizmann process exploits this property to ferment starch feedstock anaerobically at 37 °C to produce a mixture of w-butanol, acetone and ethanol in a volume ratio of 70 25 5 [3],... [Pg.43]

More than seventy years ago the impressive discovery was made that bioreduction of mannitol, glycerol and starch yields butanol. Fermentations in which butyric acid, butanol and acetone are formed from carbohydrates by different bacilli (butyl bacteria) belong in this group. The term butyl bacteria as a generic name for microbes producing the genetically related substances of the four-carbon series was proposed in 1921" and has been applied since then. The approximate course of these reactions is shown by the following formulations which, however, do not explain the mechanism ... [Pg.107]

The yield of 1,3-PD for this reaction is 67% (mol/mol). If biomass formation is considered the theoretical maximal yield reduces to 64%. In the actual fermentation a number of other by-products are formed, i. e., ethanol, lactic acid, succinic acid, and 2,3-butanediol, by the enterobacteria Klebsiella pneumoniae, Citrobacter freundii and Enterobacter agglomerans, butyric acid by Clostridium butyricum, and butanol by Clostridium pasteurianum (Fig. 1). All these by-products are associated with a loss in 1,3-PD relative to acetic acid, in particular ethanol and butanol, which do not contribute to the NADH2 pool at all. [Pg.244]

Acetyl-CoA is regenerated in this process. The overall product yields in moles per mole of glucose converted are approximately 0.5 acetate, 0.75 butyrate, 2 CO2, and 2 H2 2.5 mol ATP are formed. The nonacidic compounds, acetone, 1-butanol, and 2-propanol, are formed by transformation of some of the acetoacetyl-CoA into acetoacetic acid, which is the precursor of acetone and 2-propanol. Some of the butyryl-CoA is the precursor of 1-butanol via intermediate butyraldehyde. Ethanol is formed by reduction of small amounts of acetyl-CoA. The end result of the production of the neutral products by these additional pathways is that the yields of the other products are reduced. The neutral products are in a lower oxidation state than the acidic products and require additional reducing power as NADH to be formed. Some of the product Hj serves to sustain and provide NADH because higher partial pressures of H2 during the fermentation promote higher yields of the neutral products, whereas removal of the product H2 as it is formed has the opposite effect. [Pg.432]


See other pages where Butyric Acid and Butanol-Forming Fermentations is mentioned: [Pg.938]    [Pg.971]    [Pg.25]    [Pg.58]    [Pg.37]    [Pg.938]    [Pg.971]    [Pg.25]    [Pg.58]    [Pg.37]    [Pg.230]    [Pg.89]    [Pg.103]    [Pg.140]    [Pg.208]    [Pg.130]    [Pg.38]    [Pg.93]    [Pg.110]    [Pg.136]    [Pg.117]    [Pg.7]    [Pg.196]   


SEARCH



Butanol Butyric acid

Butanol-forming fermentations

Butyrate/butyric acid

Butyric acid

Butyric acid, fermentation

© 2024 chempedia.info