Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Butyl characteristics

Esters. Most acryhc acid is used in the form of its methyl, ethyl, and butyl esters. Specialty monomeric esters with a hydroxyl, amino, or other functional group are used to provide adhesion, latent cross-linking capabihty, or different solubihty characteristics. The principal routes to esters are direct esterification with alcohols in the presence of a strong acid catalyst such as sulfuric acid, a soluble sulfonic acid, or sulfonic acid resins addition to alkylene oxides to give hydroxyalkyl acryhc esters and addition to the double bond of olefins in the presence of strong acid catalyst (19,20) to give ethyl or secondary alkyl acrylates. [Pg.150]

A flavor is tried at several different levels and in different mediums until the most characteristic one is selected. This is important because the character of a material is known to change quaUty with concentration and environment. For example, anethole, ben2aldehyde, and citral taste different with and without acid. Gamma-decalactone has different characters at different levels of use. -/ fZ-Butyl phenylacetate with acid is strawberry or fmity without acid it is creamy milk chocolate. 2,5-Dimethyl-4-hydroxy-3-(2Fi)-furanone with acid is strawberry without acid it is caramel or meat. [Pg.16]

AH-acryHc (100%) latex emulsions are commonly recognized as the most durable paints for exterior use. Exterior grades are usuaHy copolymers of methyl methacrylate with butyl acrylate or 2-ethyIhexyl acrylate (see Acrylic ester polymers). Interior grades are based on methyl methacrylate copolymerized with butyl acrylate or ethyl acrylate. AcryHc latex emulsions are not commonly used in interior flat paints because these paints typicaHy do not require the kind of performance characteristics that acryHcs offer. However, for interior semigloss or gloss paints, aH-acryHc polymers and acryHc copolymers are used almost exclusively due to their exceUent gloss potential, adhesion characteristics, as weU as block and print resistance. [Pg.540]

ButylatedPhenols and Cresols. Butylated phenols and cresols, used primarily as oxidation inhibitors and chain terrninators, are manufactured by direct alkylation of the phenol using a wide variety of conditions and acid catalysts, including sulfuric acid, -toluenesulfonic acid, and sulfonic acid ion-exchange resins (110,111). By use of a small amount of catalyst and short residence times, the first-formed, ortho-alkylated products can be made to predominate. Eor the preparation of the 2,6-substituted products, aluminum phenoxides generated in situ from the phenol being alkylated are used as catalyst. Reaction conditions are controlled to minimise formation of the thermodynamically favored 4-substituted products (see Alkylphenols). The most commonly used is -/ fZ-butylphenol [98-54-4] for manufacture of phenoHc resins. The tert-huty group leaves only two rather than three active sites for condensation with formaldehyde and thus modifies the characteristics of the resin. [Pg.372]

An important characteristic of solvents is rate of evaporation. Rates of solvent loss are controUed by the vapor pressure of the solvent(s) and temperature, partial pressure of the solvent over the surface, and thus the air-flow rate over the surface, and the ratio of surface area to volume. Tables of relative evaporation rates, in which -butyl acetate is the standard, are widely used in selecting solvents. These relative rates are deterrnined experimentally by comparing the times required to evaporate 90% of a weighed amount of solvent from filter paper under standard conditions as compared to the time for -butyl acetate. The rates are dependent on the standard conditions selected (6). Most tables of relative evaporation rates are said to be at 25°C. This, however, means that the air temperature was 25°C, not that the temperature of the evaporating solvent was 25°C. As solvents evaporate, temperature drops and the drop in temperature is greatest for solvents that evaporate most rapidly. [Pg.342]

The first use for butyl mbber was ia inner tubes, the air-retention characteristics of which contributed significantly to the safety and convenience of tires. Good weathefing, ozone resistance, and oxidative stabiUty have led to appHcations ia mechanical goods and elastomeric sheeting. Automobile tires were manufactured for a brief period from butyl mbber, but poor abrasion resistance restricted this development at the time. [Pg.480]

Mechanical properties depend considerably on the stmctural characteristics of the EPM/EPDM and the type and amount of fillers in the compound. A wide range of hardnesses can be obtained with EPM/EPDM vulcanisates. The elastic properties are by far superior to those of many other synthetic mbber vulcanizates, particularly of butyl mbber, but they do not reach the level obtained with NR or SBR vulcanizates. The resistance to compression set is surprisingly good, in particular for EPDM with a high ENB content. [Pg.505]

A number of higher n-alkyl methacrylate polymers have found commercial usage. The poly-(n-butyl-), poly-(n-octyl-) and poly-(n-nonyl methacrylate)s have found use as leathering finishes whilst polyflauryl methacrylate) has become useful as a pour-point depressant and improver of viscosity temperature characteristics of lubricating oils. [Pg.421]

Vulcanisation can be effected by diamines, polyamines and lead compounds such as lead oxides and basic lead phosphite. The homopolymer vulcanisate is similar to butyl rubber in such characteristics as low air permeability, low resilience, excellent ozone resistance, good heat resistance and good weathering resistance. In addition the polyepichlorohydrins have good flame resistance. The copolymers have more resilience and lower brittle points but air impermeability and oil resistance are not so good. The inclusion of allyl glycidyl ether in the polymerisation recipe produces a sulphur-curable elastomer primarily of interest because of its better resistance to sour gas than conventional epichlorhydrin rubbers. [Pg.548]

Polyisobutylene has a similar chemical backbone to butyl rubber, but does not contain double carbon-carbon bonds (only terminal unsaturation). Many of its characteristics are similar to butyl rubber (ageing and chemical resistance, low water absorption, low permeability). The polymers of the isobutylene family have very little tendency to crystallize. Their strength is reached by cross-linking instead of crystallization. The amorphous structure of these polymers is responsible for their flexibility, permanent tack and resistance to shock. Because the glass transition temperature is low (about —60°C), flexibility is maintained even at temperatures well below ambient temperature. [Pg.584]

Observable Characteristics - Physical State (as normally shipped) Liquid Color Colorless Odor Mild somewhat alcoholic like butyl alcohol. [Pg.145]

The A-ring of the 17-ol (25) derived from equilenin 3-methyl ether is reduced rapidly under Birch reduction conditions, since the 1,4-positions are unsubstituted. The B-ring is reduced at a much slower rate, as is characteristic of aromatic compounds in which 1,4-reduction can occur only if a proton enters an alkylated position. Treatment of (25) with sodium and t-butyl alcohol in ammonia reduces only the A-ring to afford the corresponding 1,4-dihydro compound in over 85% yield.On the other hand,... [Pg.8]

Only limited IR spectroscopic data for (benzo)thiepins have been reported. The C —C double bond stretching frequency in 2,7-di-rm-butyl-4,5-dimethylthiepin is observed at 1620 cm-1 with weak intensity.13 Characteristic strong intensities are found for the S —O vibrations in sulfoxide (e.g., 1040 cm-1 for 5-methoxy-4-phenyl-l-benzothiepin-3(2//)-one 1-oxide14) and sulfone (e.g., 1120 and 1300 cm-1 for thiepin 1,1-dioxide15) derivatives. [Pg.67]

Table 15. Physico-mechanical characteristics and heats of mixing with chloroform (dH3) of poly(butyl methacrylate) polymerization-filled with aerosil (10% by mass) [333, 334]... Table 15. Physico-mechanical characteristics and heats of mixing with chloroform (dH3) of poly(butyl methacrylate) polymerization-filled with aerosil (10% by mass) [333, 334]...
The presence of chlorine and/or bromine is easily detected by their characteristic isotopic patterns (see Appendix 11). As in many aliphatic compounds, the abundance of the molecular ion decreases as the size of the R group increases. For example, in the El mass spectra of methyl chloride and ethyl chloride, the molecular ion intensities are high, whereas in compounds with larger R groups such as butyl chloride, the molecular ion peak is relatively small or nonexistent. [Pg.272]

In a similar system, the reaction of the ferric(edta) complex with peroxycarboxylic acids was probed by adding 2,4,6-tri-fe/r-butyl phenol, ArOH.2 This experiment gave rise to the aryloxyl radical, ArO, which persisted for hours and was detected by its characteristic spectrum. It was indeed formed in the reaction mentioned, at a rate that was independent of [ArOH], It was proposed that ArO results from a reactive oxo-iron intermediate, tentatively (edta)FevO. [Pg.102]

Yields higher than about 70% for any of these isonitrile preparations generally indicate incomplete fractionation. The purity of the product may be conveniently checked by proton magnetic resonance spectroscopy. The characteristic 1 1 1 triplet for tert-butyl isocyanide appears at <5 1.45 (chloroform-d). A small upheld peak usually indicates the presence of unreacted amine. Other common contaminants are dichloromethane and chloroform The purity may be determined more accurately by gas chromatographic analysis on a 230 cm. by 0.6 cm. column packed with 10%SE30 on Chromosorb G, 60-80 mesh, at 80°. [Pg.98]


See other pages where Butyl characteristics is mentioned: [Pg.188]    [Pg.188]    [Pg.78]    [Pg.143]    [Pg.41]    [Pg.64]    [Pg.391]    [Pg.328]    [Pg.213]    [Pg.253]    [Pg.202]    [Pg.466]    [Pg.320]    [Pg.481]    [Pg.485]    [Pg.486]    [Pg.500]    [Pg.556]    [Pg.422]    [Pg.560]    [Pg.60]    [Pg.112]    [Pg.139]    [Pg.141]    [Pg.143]    [Pg.214]    [Pg.224]    [Pg.271]    [Pg.369]    [Pg.13]    [Pg.13]    [Pg.30]    [Pg.245]    [Pg.52]    [Pg.130]   
See also in sourсe #XX -- [ Pg.158 ]




SEARCH



Butyl rubbers characteristics

© 2024 chempedia.info