Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Burning turbulent

A deflagration-detonation transition was first observed in 1985 in a large-scale experiment with an acetylene-air mixture (Moen et al. 1985). More recent investigations (McKay et al. 1988 and Moen et al. 1989) showing that initiation of detonation in a fuel-air mixture by a burning, turbulent, gas jet is possible, provided the jet is large enough. Early indications are that the diameter of the jet must exceed five times the critical tube diameter, that is approximately 65 times the cell size. [Pg.89]

The MTO process employs a turbulent fluid-bed reactor system and typical conversions exceed 99.9%. The coked catalyst is continuously withdrawn from the reactor and burned in a regenerator. Coke yield and catalyst circulation are an order of magnitude lower than in fluid catalytic cracking (FCC). The MTO process was first scaled up in a 0.64 m /d (4 bbl/d) pilot plant and a successfiil 15.9 m /d (100 bbl/d) demonstration plant was operated in Germany with U.S. and German government support. [Pg.85]

In most cases, FBCs employ some type of air injection system in the floor of the furnace both to impart turbulence into the burning fuel bed and supply combustion air. Secondary and tertiary air ports may be located above the burning fuel bed. [Pg.9]

The vapor cloud of evaporated droplets bums like a diffusion flame in the turbulent state rather than as individual droplets. In the core of the spray, where droplets are evaporating, a rich mixture exists and soot formation occurs. Surrounding this core is a rich mixture zone where CO production is high and a flame front exists. Air entrainment completes the combustion, oxidizing CO to CO2 and burning the soot. Soot bumup releases radiant energy and controls flame emissivity. The relatively slow rate of soot burning compared with the rate of oxidation of CO and unbumed hydrocarbons leads to smoke formation. This model of a diffusion-controlled primary flame zone makes it possible to relate fuel chemistry to the behavior of fuels in combustors (7). [Pg.412]

In the reaction 2one, an increase in the intensity of the turbulence is related to the turbulent flame speed. It has been proposed that flame-generated turbulence results from shear forces within the burning gas (1,28). The existence of flame-generated turbulence is not, however, universally accepted, and in unconfined flames direct measurements of velocity indicate that there is no flame-generated turbulence (1,2). [Pg.518]

After combustion, the rich burning mixture leaves the combustion zone and flows between the rows of air jets entering the liner. Each jet entrains air and burning fuel and carries it toward the combustor axis, forming torroidal recirculation patterns around each jet that result in intensive turbulence and mixing throughout the combustor. [Pg.380]

Technology Description Fluidized bed incinerators utilize a very turbulent bed of inert granular material (usually sand) to improve the transfer of heat to the waste streams to be incinerated. Air is blown through the granular bed materials until they are "suspended" and able to move and mix in a manner similar to a fluid, i.e., they are "fluidized".In this manner, the heated bed particles come in intimate contact with the wastes being burned. The process requires that the waste be fed into multiple injection ports for successful treatment. Advantages... [Pg.163]

Flameholder - Flameholders are necessary to prevent the flame from "riding" up to the top of the stack. They provide a surface at which burning can take place and also promote better mixing of air and gas by the additional turbulence which they cause above the jets. Construction is simply a solid, 25 mm diameter rod of refractory material (silicon carbide) supported horizontally above each burner line. The bottom of the rod should be 13 mm above the tips of the jets. [Pg.263]

Fundamental, laminar, and turbulent burning velocities describe three modes of flame propagation (see the Glossary for definitions). The fundamental burning velocity, S, is as its name implies, a fundamental property of a flammable mixture, and is a measure of how fast reactants are consumed and transformed into products of combustion. Fundamental burning velocity data for selected gases and vapors are listed in Appendix C of NFPA68 (1998). [Pg.60]

Flame Speed The speed of a flame front relative to a fixed reference point. Flame speed is dependent on turbulence, the equipment geometry, and the fundamental burning velocity. [Pg.201]

Intense mixing of burned and unbumed components within large, coherent, turbulent, eddy structures of a jet may lead to local conditions that may induce the SWACER mechanism and trigger detonation. [Pg.89]

Experimental research has shown that a vapor cloud explosion can be described as a process of combustion-driven expansion flow with the turbulent structure of the flow acting as a positive feedback mechanism. Combustion, turbulence, and gas dynamics in this complicated process are closely interrelated. Computational research has explored the theoretical relations among burning speed, flame speed, combustion rates, geometry, and gas dynamics in gas explosions. [Pg.92]

When gas concentrations are high, burning is characterized by the presence of a tall, turbulent-diffusion, flame plume. At points where the cloud s vapor had already mixed sufficiently with air, the vertical depth of the visible burning zone is about equal to the initial, visible depth of the cloud. [Pg.151]

In the North American market, water heaters are almost always made with the cold water inlet and hot water outlet lines coming out of the top of the tank. The hot water outlet opens right into the top of the tank and so draws off the hottest water. The hot water has risen to the top of the tank because of its lower density. The cold water on the inlet side is directed to the bottom of the tank by a plastic dip-tube. In some models the dip-tube is curved or bent at the end to increase the turbulence at the bottom of the tank. This is to keep any sediment from settling on the bottom of the tank. As sediment— usually calcium carbonate or lime—precipitated out of the water by the increased temperature builds up, it will increase the thermal stress on the bottom of a gas-fired water heater and increase the likelihood of tank failure. On electric water heaters the sediment builds up on the surface of the elements, especially if the elements are high-density elements. Low-density elements spread the same amount of power over a larger surface of the element so the temperatures are not as high and lime doesn t build up as quickly. If the lower elements get completely buried in the sediment, the element will likely overheat and burn out. [Pg.1216]

Ya.B. ZeFdovich, FizGoreniyaVzryva 7 (4), 463-76 (1971) CA 77, 64194 (1972) The influence of turbulence and nonturbulence is examined relative to a proplnt burning in a gas flow. Equations indicate exptl methods for determining the magnitudes of the thermal conductivity and viscosity under turbulent flow, and permit a study of thermal flow distribution and temps in a gas wherein an exothermic chem reaction occurs. Equations for non turbulent conditions can be used to calculate the distance from the surface of the proplnt to the zone of intense chem reaction and establish the relation of bulk burning rate to the vol reaction rate. [Pg.939]

Shy, S.S., Jang, R.H., and Tang, C.Y., Simulation of turbulent burning velocities using aqueous autocatalytic reactions in a near-homogeneous turbulence. Combust. Flame, 105, 54, 1996. [Pg.117]

Abdel-Gayed,R.G., Bradley, D.,andLawes, M., Turbulent burning velocities A general correlation in terms of straining rates, Proc. R. Soc. Lond. A, 414, 389,1987. [Pg.118]

Shy, S.S., Lin, W.J., and Peng, K.Z., High-intensity turbulent premixed combustion General correlations of turbulent burning velocities in a new cruciform burner, Proc. Combust. Inst., 28, 561, 2000. [Pg.118]

Turbulent mass burning rate versus the turbulent root-mean-square velocity by Karpov and Severin [18]. Here, nis the air excess coefficient that is the inverse of the equivalence ratio. (Reprinted from Abdel-Gayed, R., Bradley, D., and Lung, F.K.-K., Combustion regimes and the straining of turbulent premixed flames. Combust. Flame, 76, 213, 1989. With permission. Figure 2, p. 215, copyright Elsevier editions.)... [Pg.142]


See other pages where Burning turbulent is mentioned: [Pg.592]    [Pg.592]    [Pg.389]    [Pg.144]    [Pg.180]    [Pg.9]    [Pg.13]    [Pg.216]    [Pg.524]    [Pg.524]    [Pg.1137]    [Pg.2301]    [Pg.2303]    [Pg.2304]    [Pg.2313]    [Pg.58]    [Pg.376]    [Pg.376]    [Pg.363]    [Pg.61]    [Pg.109]    [Pg.207]    [Pg.22]    [Pg.51]    [Pg.364]    [Pg.785]    [Pg.173]    [Pg.50]    [Pg.52]    [Pg.112]    [Pg.118]    [Pg.141]    [Pg.142]   
See also in sourсe #XX -- [ Pg.696 , Pg.699 ]




SEARCH



Burning velocity turbulent

Laminar and turbulent burning velocities

Turbulent burning rates

© 2024 chempedia.info