Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bulk water systems

The parameter g12 is the change of the free energy of water molecules when they are driven back to the bulk water system. The exergonic character of process (2.9) will favor the concurrent process (2.7) of protein adsorption onto the material. [Pg.9]

On the other hand, the values for g13 or g23 are positive, with a few exceptions. In other words, the adsorption processes of water and of protein onto polymer surfaces are for the most part thermodynamically unfavorable. The negative values of gs are the result of a remarkable decrease in free energy when adsorptive water molecules are driven back to the bulk water system, as seen... [Pg.11]

The ultimate reason for studying water clusters is of course to understand tire interactions in bulk water (tliough clusters are interesting in tlieir own right, too, because finite-size systems can have special properties). There has been... [Pg.2450]

The production of hydroxide ions creates a localized high pH at the cathode, approximately 1—2 pH units above bulk water pH. Dissolved oxygen reaches the surface by diffusion, as indicated by the wavy lines in Figure 8. The oxygen reduction reaction controls the rate of corrosion in cooling systems the rate of oxygen diffusion is usually the limiting factor. [Pg.266]

Most microbes in cooling systems can be controlled by chlorine or bromine treatment if exposed to a sufficient residual for a long enough time. A free chlorine residual of 0.1—0.5 ppm is adequate to control bulk water organisms if the residual can be maintained for a sufficient period of time. [Pg.272]

As in the case of the salt complexation processes, the cryogenic systems require prepuriftcation of the feed gas. Bulk water, hydrogen sulfide, and carbon dioxide are removed by standard techniques. Final removal of these materials is accompHshed by adsorption. After prepuriftcation, the gases are ready for cryogenic processing. [Pg.55]

This chapter has given an overview of the structure and dynamics of lipid and water molecules in membrane systems, viewed with atomic resolution by molecular dynamics simulations of fully hydrated phospholipid bilayers. The calculations have permitted a detailed picture of the solvation of the lipid polar groups to be developed, and this picture has been used to elucidate the molecular origins of the dipole potential. The solvation structure has been discussed in terms of a somewhat arbitrary, but useful, definition of bound and bulk water molecules. [Pg.493]

Dispersion modeling equations for water systems take the same form as those presented later in this chapter for the atmosphere. Analytical solutions tire not nearly as complicated or difficult, since the bulk motion of the fluid (in this case, wtiicr) is a weak vtiriablc with respect to m.ignitude, direction, lime, and position as it is when the fluid is air. [Pg.363]

NOTE Compare this with similar problems in CW systems—those of easily and accurately (and at low-cost) determining levels of microbiological contamination. In most CW systems, apart from a general maintenance quality indicator, the levels of bulk water planktonic organisms tend to have little relevance to sessile organism-biofilm reactions occurring at the metal-water interface. [Pg.441]

These tracer and tagged polymer products are very useful for conducting test work such as in the examples given above, but, similar to their application in cooling water, the monitoring system only measures the bulk-water concentration of polymer. This may have little or no relevance to metal surface chemistry and the protective integrity of the magnetite film. [Pg.662]

Phosphoric acid ester was used as a model for the estimation of concentration of a reagent in an adsorbed layer by optical measurements of the intensity of a beam reflecting externally from the liquid-liquid interface. The refractive index of an adsorbed layer between water and organic solution phases was measured through an external reflection method with a polarized incident laser beam to estimate the concentration of a surfactant at the interface. Variation of the interfacial concentration with the bulk concentration estimated on phosphoric acid ester in heptane and water system from the optical method agreed with the results determined from the interfacial tension measurements... [Pg.614]

The difficulties and low-throughput nature of the experimental dual determination, especially in alkane-water systems, the development of other techniques more amenable to automation, as well as more refined computational approaches for octanol-water systems, aU have contributed to Umit the use of the alkane-water system as a second bulk-phase system. However, efforts have been devoted to the development of log (alkane) computational prediction methods by Rekker et al. [13] as well as Caron and Ermondi [14]. [Pg.411]

However, the equilibrium of the indicator adsorbed at an interface may also be affected by a lower dielectric constant as compared to bulk water. Therefore, it is better to use instead pH, the interfacial and bulk pK values in Eq. (50). The concept of the use at pH indicators for the evaluation of Ajy is also basis of other methods, like spin-labeled EPR, optical and electrochemical probes [19,70]. The results of the determination of the Aj by means of these methods may be loaded with an error of up to 50mV [19]. For some the potentials determined by these methods, Ajy values are in a good agreement with the electrokinetic (zeta) potentials found using microelectrophoresis [73]. It is proof that, for small systems, there is lack of methods for finding the complete value of A>. [Pg.36]

The heptane water and toluene water interfaces were simulated by the use of the DREIDING force field on the software of Cerius2 Dynamics and Minimizer modules (MSI, San Diego) [6]. The two-phase systems were constructed from 62 heptane molecules and 500 water molecules or 100 toluene molecules and 500 water molecules in a quadratic prism cell. Each bulk phase was optimized for 500 ps at 300 K under NET ensemble in advance. The periodic boundary conditions were applied along all three directions. The calculations of the two-phase system were run under NVT ensemble. The dimensions of the cells in the final calculations were 23.5 A x 22.6 Ax 52.4 A for the heptane-water system and 24.5 A x 24.3 A x 55.2 A for the toluene-water system. The timestep was 1 fs in all cases and the simulation almost reached equilibrium after 50 ps. The density vs. distance profile showed a clear interface with a thickness of ca. 10 A in both systems. The result in the heptane-water system is shown in Fig. 3. Interfacial adsorption of an extractant can be simulated by a similar procedure after the introduction of the extractant molecule at the position from where the dynamics will be started. [Pg.364]

Isoperibolic calorimetry measurements on the n-butanol/water and n-butoxyethanol/water systems have demonstrated the accuracy and convenience of this technique for measuring consolute phase compositions in amphiphile/water systems. Additional advantages of calorimetry over conventional phase diagram methods are that (1) calorimetry yields other useful thermodynamic parameters, such as excess enthalpies (2) calorimetry can be used for dark and opaque samples and (3) calorimetry does not depend on the bulk separation of conjugate fluids. Together, the present study and studies in the literature encompass all of the classes of compounds of the amphiphile/CO ydrocarbon/water systems that are encountered in... [Pg.304]


See other pages where Bulk water systems is mentioned: [Pg.116]    [Pg.407]    [Pg.410]    [Pg.116]    [Pg.407]    [Pg.410]    [Pg.244]    [Pg.142]    [Pg.166]    [Pg.167]    [Pg.397]    [Pg.194]    [Pg.148]    [Pg.260]    [Pg.145]    [Pg.228]    [Pg.494]    [Pg.38]    [Pg.383]    [Pg.354]    [Pg.12]    [Pg.340]    [Pg.236]    [Pg.396]    [Pg.42]    [Pg.604]    [Pg.336]    [Pg.320]    [Pg.410]    [Pg.76]    [Pg.367]    [Pg.408]    [Pg.416]    [Pg.193]    [Pg.126]    [Pg.245]    [Pg.142]    [Pg.190]   


SEARCH



Bulk water

Bulk water systems biological macromolecules

Bulk water systems bond orientational ordering

Bulk water systems characterized

Bulk water systems glass transition

© 2024 chempedia.info