Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Buffer sublayer

In this paragraph the wall function concept is outlined. The wall functions are empirical parameterizations of the mean flow variable profiles within the inner part of the wall boundary layers, bridging the fully developed turbulent log-law flow quantities with the wall through the viscous and buffer sublayers where the two-equation turbulence model is strictly not valid. These empirical parameterizations thus allow the numerical flow simulation to be carried out with a finite resolution within the wall boundary layers, and one avoids accounting for viscous effects in the model equations. Therefore, in the numerical implementation of the k-e model one anticipates that the boundary layer flow is not fully resolved by the model resolution. The first grid point or node used at a wall boundary is thus placed within the fully turbulent log-law sub-layer, rather than on the wall itself [95]. In effect, the wall functions amount to a synthetic boundary condition for the k-e model. In addition, the limited boundary layer resolution required also provides savings on computer time and storage. [Pg.151]

As velocity continues to rise, the thicknesses of the laminar sublayer and buffer layers decrease, almost in inverse proportion to the velocity. The shear stress becomes almost proportional to the momentum flux (pk ) and is only a modest function of fluid viscosity. Heat and mass transfer (qv) to the wall, which formerly were limited by diffusion throughout the pipe, now are limited mostly by the thin layers at the wall. Both the heat- and mass-transfer rates are increased by the onset of turbulence and continue to rise almost in proportion to the velocity. [Pg.90]

For turbulent flow of a fluid past a solid, it has long been known that, in the immediate neighborhood of the surface, there exists a relatively quiet zone of fluid, commonly called the Him. As one approaches the wall from the body of the flowing fluid, the flow tends to become less turbulent and develops into laminar flow immediately adjacent to the wall. The film consists of that portion of the flow which is essentially in laminar motion (the laminar sublayer) and through which heat is transferred by molecular conduction. The resistance of the laminar layer to heat flow will vaiy according to its thickness and can range from 95 percent of the total resistance for some fluids to about I percent for other fluids (liquid metals). The turbulent core and the buffer layer between the laminar sublayer and turbulent core each offer a resistance to beat transfer which is a function of the turbulence and the thermal properties of the flowing fluid. The relative temperature difference across each of the layers is dependent upon their resistance to heat flow. [Pg.558]

I0-38Z ) is solved to give the temperature distribution from which the heat-transfer coefficient may be determined. The major difficulties in solving Eq. (5-38Z ) are in accurately defining the thickness of the various flow layers (laminar sublayer and buffer layer) and in obtaining a suitable relationship for prediction of the eddy diffusivities. For assistance in predicting eddy diffusivities, see Reichardt (NACA Tech. Memo 1408, 1957) and Strunk and Chao [Am. ln.st. Chem. Eng. J., 10, 269(1964)]. [Pg.560]

In turbulent flow, the velocity profile is much more blunt, with most of the velocity gradient being in a region near the wall, described by a universal velocity profile. It is characterized by a viscous sublayer, a turbulent core, and a buffer zone in between. [Pg.637]

If the buffer layer is neglected, it has been shown (Section 12.4.4) that the laminar sublayer will extend to y+ = 11.6 giving ... [Pg.709]

In the Taylor-Prandtl modification of the theory of heat transfer to a turbulent fluid, it was assumed that the heat passed directly from the turbulent fluid to the laminar sublayer and the existence of the buffer layer was neglected. It was therefore possible to apply the simple theory for the boundary layer in order to calculate the heat transfer. In most cases, the results so obtained are sufficiently accurate, but errors become significant when the relations are used to calculate heat transfer to liquids of high viscosities. A more accurate expression can be obtained if the temperature difference across the buffer layer is taken into account. The exact conditions in the buffer layer are difficult to define and any mathematical treatment of the problem involves a number of assumptions. However, the conditions close to the surface over which fluid is flowing can be calculated approximately using the universal velocity profile,(10)... [Pg.727]

A review on drag-reducing polymers is given in the literature [1359]. It has been suggested that drag reduction occurs by the interactions between elastic macromolecules and turbulent-flow macrostructures. In turbulent pipe flow, the region near the wall, composed of a viscous sublayer and a buffer layer, plays a major role in drag reduction. [Pg.167]

Equation (6-31) applies to the laminar sublayer region in a Newtonian fluid, which has been found to correspond to 0 < y+ < 5. The intermediate region, or buffer zone, between the laminar sublayer and the turbulent boundary layer can be represented by the empirical equation... [Pg.159]

The near-wall region is conceptually subdivided into three layers, based on experimental evidence. The innermost layer is the viscous sublayer in which the flow is almost laminar, and the molecular viscosity plays a dominant role. The outer layer is considered to be fully turbulent. The buffer layer lies between... [Pg.321]

To save computational effort, high-Reynolds number models, such as k s and its variants, are coupled with an approach in which the viscosity-affected inner region (viscous sublayer and buffer layer) are not resolved. Instead, semiempiri-cal formulas called wall functions are used to bridge the viscosity-affected region between the wall and the fully turbulent region. The two approaches to the sublayer problem are depicted schematically in Fig. 2 (Fluent, 2003). [Pg.322]

At the wall, e O, but this behaviour cannot be calculated from the l/7th power law, which is not valid near the wall (ie in the viscous sublayer and buffer zone). The equation is also slightly in error at the centre-line where it does not predict the required zero velocity gradient, e tends to a non-zero value at the centre-line. Although the shear stress and velocity gradient both tend to zero at the centre-line and e is therefore indeterminate from equation 1.95, it can be determined by applying L Hopital s rule [Longwell (1966)]. [Pg.64]

As the fluid s velocity must be zero at the solid surface, the velocity fluctuations must be zero there. In the region very close to the solid boundary, ie the viscous sublayer, the velocity fluctuations are very small and the shear stress is almost entirely the viscous stress. Similarly, transport of heat and mass is due to molecular processes, the turbulent contribution being negligible. In contrast, in the outer part of the turbulent boundary layer turbulent fluctuations are dominant, as they are in the free stream outside the boundary layer. In the buffer or generation zone, turbulent and molecular processes are of comparable importance. [Pg.66]

Equation 2.40 is an empirical equation known as the one-seventh power velocity distribution equation for turbulent flow. It fits the experimentally determined velocity distribution data with a fair degree of accuracy. In fact the value of the power decreases with increasing Re and at very high values of Re it falls as low as 1/10 [Schlichting (1968)]. Equation 2.40 is not valid in the viscous sublayer or in the buffer zone of the turbulent boundary layer and does not give the required zero velocity gradient at the centre-line. The l/7th power law is commonly written in the form... [Pg.87]

Consider a fully developed turbulent flow through a pipe of circular cross section. A turbulent boundary layer will exist with a thin viscous sublayer immediately adjacent to the wall, beyond which is the buffer or generation layer and finally the fully turbulent outer part of the boundary layer. [Pg.89]

Conditions in the fully turbulent outer part of the turbulent boundary layer are quite different. In a turbulent fluid, the shear stress f is given by equation 1.95. As illustrated in Example 1.10, outside the viscous sublayer and buffer zone the eddy kinematic viscosity e is much greater than the molecular kinematic viscosity v. Consequently equation 1.95 can be written as... [Pg.90]

Figure 2.4b shows, conceptually, the velocity distribution in steady turbulent flow through a straight round tube. The velocity at the tube wall is zero, and the fluid near the wall moves in laminar flow, even though the flow of the main body of fluid is turbulent. The thin layer near the wall in which the flow is laminar is called the laminar sublayer or laminar film, while the main body of fluid where turbulence always prevails is called the turbulent core. The intermediate zone between the laminar sublayer and the turbulent core is called the buffer layer, where the motion of fluid may be either laminar or turbulent at a given instant. With a relatively long tube, the above statement holds for most of the tube length, except for... [Pg.20]

Velocity distributions in turbulent flowthrough a straight, round tube vary with the flow rate or the Reynolds number. With increasing flow rates the velocity distribution becomes flatter and the laminar sublayer thinner. Dimensionless empirical equations involving viscosity and density are available that correlate the local fluid velocities in the turbulent core, buffer layer, and the laminar sublayer as functions of the distance from the tube axis. The ratio of the average velocity over the entire tube cross section to the maximum local velocity at the tube axis is approximately 0.7-0.85, and increases with the Reynolds number. [Pg.21]

In terms of our previous qualitative discussion, the laminar sublayer is the region where 0, the buffer layer has eM r, and the turbulent layer has cm v. Therefore, taking e,v = 0 in Eq. (5-69) and integrating yields... [Pg.241]

A turbulent boundary layer is actually made up of three zones, a viscous or laminar sublayer immediately adjoining the wall, a buffer zone, and finally a turbulent zone making up the main boundary layer (Schlicting, 1968). Generally speaking, turbulent boundary layers are thicker than laminar boundary layers. [Pg.288]


See other pages where Buffer sublayer is mentioned: [Pg.344]    [Pg.751]    [Pg.235]    [Pg.344]    [Pg.751]    [Pg.235]    [Pg.89]    [Pg.156]    [Pg.159]    [Pg.66]    [Pg.93]    [Pg.93]    [Pg.133]    [Pg.230]    [Pg.22]    [Pg.78]    [Pg.115]    [Pg.193]    [Pg.386]    [Pg.385]    [Pg.3877]    [Pg.312]    [Pg.66]   
See also in sourсe #XX -- [ Pg.751 ]




SEARCH



Sublayer

© 2024 chempedia.info