Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bronsted cationic

Apart from Bronsted acid activation, the acetyl cation (and other acyl ions) can also be activated by Lewis acids. Although the 1 1 CH3COX-AIX3 Friedel-Crafts complex is inactive for the isomerization of alkanes, a system with two (or more) equivalents of AIX3 was fonnd by Volpin to be extremely reactive, also bringing abont other electrophilic reactions. [Pg.194]

When concentrated sulphuric acid alone was used as the initiator, the polymerization was found to follow a different path. It is well known that Bronsted acids can function as cationic/pseudocationic initiators in the oligomerization of olifins [174]. If the counter ion has a higher nucleophilicity as it forms cation-conjugate pairs, which collapse rapidly, polymerization will not take place. As the counter ion in the case of sulphuric acid is not very strong compared to the cation, oligomerization can take place, but may not be to a very high molecular weight. This, however, depends on the nature of the... [Pg.424]

Acid-treated clays were the first catalysts used in catalytic cracking processes, but have been replaced by synthetic amorphous silica-alumina, which is more active and stable. Incorporating zeolites (crystalline alumina-silica) with the silica/alumina catalyst improves selectivity towards aromatics. These catalysts have both Fewis and Bronsted acid sites that promote carbonium ion formation. An important structural feature of zeolites is the presence of holes in the crystal lattice, which are formed by the silica-alumina tetrahedra. Each tetrahedron is made of four oxygen anions with either an aluminum or a silicon cation in the center. Each oxygen anion with a -2 oxidation state is shared between either two silicon, two aluminum, or an aluminum and a silicon cation. [Pg.70]

Cations of weak bases (i.e. Bronsted acids such as the phenylammonium ion C6H5NH3) may be titrated with strong bases, and the treatment is similar. These were formerly regarded as salts of weak bases (e.g. aniline (phenylamine), Kb = 4.0 x 10 10) and strong acids an example is aniline hydrochloride (phenylammonium chloride). [Pg.279]

The Bronsted definition also includes the possibility that an ion is an acid (an option not allowed by the Arrhenius definition). For instance, a hydrogen carbonate ion, HC03, one of the species present in natural waters, can act as an acid and lose a proton, and the resulting carbonate ion is removed by precipitation if suitable cations are present (Fig. 10.2) ... [Pg.516]

A note on good practice The oxides and hydroxides of the alkali and alkaline earth metals are not Bronsted bases the oxide and hydroxide ions they contain are the bases (the cations are spectator ions). However, for convenience, chemists often refer to the compounds themselves as bases. [Pg.517]

FIGURE 10.19 In water, Al3+ cations are hydrated by water molecules that can act as Bronsted acids. Although, for clarity, only four water molecules are shown here, a metal cation typically has six H20 molecules attached to it. [Pg.540]

Diborane reacts with ammonia to form an ionic compound (there are no other products). The cation and anion each contain one boron atom, (a) Predict the identity and formula of each ion. (b) Give the hybridization of each boron atom, (c) Identify the type of reaction that has occurred (redox, Lewis acid-base, or Bronsted acid-base). [Pg.741]

The isomorphic substituted aluminum atom within the zeolite framework has a negative charge that is compensated by a counterion. When the counterion is a proton, a Bronsted acid site is created. Moreover, framework oxygen atoms can give rise to weak Lewis base activity. Noble metal ions can be introduced by ion exchanging the cations after synthesis. Incorporation of metals like Ti, V, Fe, and Cr in the framework can provide the zeolite with activity for redox reactions. [Pg.213]

Cations at the surface possess Lewis acidity, i.e. they behave as electron acceptors. The oxygen ions behave as proton acceptors and are thus Bronsted bases. This has consequences for adsorption, as we will see. According to Bronsted s concept of basicity, species capable of accepting a proton are called a base, while a Bronsted acid is a proton donor. In Lewis concept, every species that can accept an electron is an acid, while electron donors, such as molecules possessing electron lone pairs, are bases. Hence a Lewis base is in practice equivalent to a Bronsted base. However, the concepts of acidity are markedly different. [Pg.175]

Bronsted acidity is the principal source of activity with the relative concentration of protonated and non-protonated reactants being dependent upon the nature of the exchangeable cation. Using FeCls - graphite intercalates - formed using a photochemical procedure and subsequently reduced using K/naphthalide - an efficient catalyst for the production of acetylene from syngas has been produced. [Pg.472]

These protons may then catalyse certain Bronsted reactions. One particularly effective interlamellar cation is known to be Al ( ) ... [Pg.475]

Thin self-supporting clay films (appropriate for IR measurement) readily take up organic amines such as cyclohexylamine with displacement of the major fraction of the intercalated water. For the Ua -exchanged sample the majority of the amine is present in the unprotonated form - there being insufficient Bronsted acidity generated by the interlayer cation. When Al + is the exchangeable cation, however, a major fraction of the intercalated amine becomes protonated (see Figure 2). [Pg.476]

A careful investigation of this feature suggests that it is attributable to N02 associated with both Bronsted acid and M+ cations [29]. The doublet at 1400 cm is identical in position and appearance to that observed in a sample of Na-Y doped with NaNOs [30]. We therefore assign this peak to a NO3- species affiliated with the residual sodium in the catalyst. The position of the band at 1528 cm- is very similar to that for nitrito species in Co-A and Co-Y [22, 23] and is, therefore, assigned to Co-ONO. The features at 1599, and 1574 cm- are best assigned to C0-O2NO [30]. The band at 1633 cm- is similar to that observed on H-, Na-, and Cu-ZSM-5. We believe that this feature is best assigned to nitrito (NO2) or nitrate (NO3-) species. [Pg.664]

This concept covers most situations in the theory of AB cements. Cements based on aqueous solutions of phosphoric acid and poly(acrylic acid), and non-aqueous cements based on eugenol, alike fall within this definition. However, the theory does not, unfortunately, recognize salt formation as a criterion of an acid-base reaction, and the matrices of AB cements are conveniently described as salts. It is also uncertain whether it covers the metal oxide/metal halide or sulphate cements. Bare cations are not recognized as acids in the Bronsted-Lowry theory, but hydrated... [Pg.15]

Although Lewis and Bronsted bases comprise the same species, the same is not true of their acids. Lewis acids include bare metal cations, while Bronsted-Lowry acids do not. Also, Bell (1973) and Day Selbin (1969) have pointed out that Bronsted or protonic acids fit awkwardly into the Lewis definition. Protonic acids cannot accept an electron pair as is required in the Lewis definition, and a typical Lewis protonic add appears to be an adduct between a base and the add (Luder, 1940 Kolthoff, 1944). Thus, a protonic acid can only be regarded as a Lewis add in the sense that its reaction with a base involves the transient formation of an unstable hydrogen bond adduct. For this reason, advocates of the Lewis theory have sometimes termed protonic adds secondary acids (Bell, 1973). This is an unfortunate term for the traditional adds. [Pg.18]

Fig ure 2.7 Cationic polymerization initiated by Bronsted-Lowry acid a) initiation, b) propagation, c) termination... [Pg.47]

In the case of the rhenium aqua-ion [Re(OH2)3(CO)3]+ (33b) the question has been posed whether complex-anion can be considered to be a Bronsted acid. Titrations with hydroxide in water yielded a pKa value of 7.55 which is exceptionally low for a +1 cation. After the deprotonation of one coordinated water molecule, polymer formation over (/r-OH) bridges was initiated and the two compounds [Re3(/T3-OH)(/T-OH)3(CO)9r (35) and [Re2(/i-OH)3(CO)6] were (36) isolated and structurally characterized (Scheme 6). [Pg.164]

Unlike radical chain polymerisation, initiation in cationic polymerisation uses a true catalyst that is recovered at the end of the polymerisation and is not incorporated at one end of the growing chain. Catalysts for cationic chain polymerisation are molecules able to withdraw electrons, mainly Bronsted (H2SC>4, H3PO4) and Lewis acids (BF3, A1C13, SnCh). The choice of solvent for cationic polymerisation is also important because it plays a major role in the association between cation and counter ion. A too tight association will prevent monomer insertion during the propagation step. However, the use of "stabilized"... [Pg.42]

Adsorption enthalpies and vibrational frequencies of small molecules adsorbed on cation sites in zeolites are often related to acidity (either Bronsted or Lewis acidity of H+ and alkali metal cations, respectively) of particular sites. It is now well accepted that the local environment of the cation (the way it is coordinated with the framework oxygen atoms) affects both, vibrational dynamics and adsorption enthalpies of adsorbed molecules. Only recently it has been demonstrated that in addition to the interaction of one end of the molecule with the cation (effect from the bottom) also the interaction of the other end of the molecule with a second cation or with the zeolite framework (effect from the top) has a substantial effect on vibrational frequencies of the adsorbed molecule [1,2]. The effect from bottom mainly reflects the coordination of the metal cation with the framework - the tighter is the cation-framework coordination the lower is the ability of that cation to bind molecules and the smaller is the effect on the vibrational frequencies of adsorbed molecules. This effect is most prominent for Li+ cations [3-6], In this contribution we focus on the discussion of the effect from top. The interaction of acetonitrile (AN) and carbon monoxide with sodium exchanged zeolites Na-A (Si/AM) andNa-FER (Si/Al= 8.5 and 27) is investigated. [Pg.117]

DPB as well as other DPP molecules (t-stilbene, diphenyl-hexatriene) with relatively low ionization potential (7.4-7.8 eV) and low vapor pressure was successfully incorporated in the straight channel of acidic ZSM-5 zeolite. DPP lies in the intersection of straight channel and zigzag channel in the vicinity of proton in close proximity of Al framework atom. The mere exposure of DPP powder to Bronsted acidic ZSM-5 crystallites under dry and inert atmosphere induced a sequence of reactions that takes place during more than 1 year to reach a stable system which is characterized by the molecule in its neutral form adsorbed in the channel zeolite. Spontaneous ionization that is first observed is followed by the radical cation recombination according to two paths. The characterization of this phenomenon shows that the ejected electron is localized near the Al framework atom. The reversibility of the spontaneous ionization is highlighted by the recombination of the radical cation or the electron-hole pair. The availability of the ejected electron shows that ionization does not proceed as a simple oxidation but stands for a real charge separated state. [Pg.380]

The pillaring process also affected the concentration and the strength of acid sites, as confirmed by NH3-TPD (Table 1). Also, the ion exchange with Ni2+ cations modified the acid properties of surfaces new Lewis (nickel cations) and Bronsted (H+) acid sites have been created during the ion exchange and thermal activation (eq. 1), respectively. [Pg.386]


See other pages where Bronsted cationic is mentioned: [Pg.2711]    [Pg.2783]    [Pg.203]    [Pg.515]    [Pg.320]    [Pg.320]    [Pg.276]    [Pg.316]    [Pg.188]    [Pg.40]    [Pg.201]    [Pg.104]    [Pg.603]    [Pg.86]    [Pg.156]    [Pg.100]    [Pg.252]    [Pg.138]    [Pg.54]    [Pg.61]    [Pg.109]    [Pg.113]    [Pg.116]    [Pg.116]    [Pg.131]    [Pg.321]    [Pg.362]    [Pg.377]    [Pg.68]   
See also in sourсe #XX -- [ Pg.189 ]




SEARCH



Aquated cations as Bronsted acids

Bronsted acid aquated cations

Cationic Bronsted acids

Ethyl cations as Bronsted acids

Photoinitiated cationic polymerization Bronsted acid Initiation

© 2024 chempedia.info