Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Activations Bronsted acids

A number of curing agents and catalysts used in epoxies are complex metal salts that are added to cure at room temperature or with heat. Curing agents or catalysts such as cationic dinonato (acetylacetone, etc.) complexes of Si, B, Ge, and P behave as hydrolytic activated Bronsted acid precursors, e.g. ... [Pg.186]

A further finding was that only the moderately active Bronsted acid centers are responsible for dehydration, and that Lewis acid centers such as Al " are not involved. Evidence for this is that the addition of small amoimts of bases such as NH3 or pyridine does not inhibit the reaction. The formation of ether on AI2O3 is explained by a Langmuir-Hinshelwood mechanism, in which two adjacently adsorbed... [Pg.173]

Apart from Bronsted acid activation, the acetyl cation (and other acyl ions) can also be activated by Lewis acids. Although the 1 1 CH3COX-AIX3 Friedel-Crafts complex is inactive for the isomerization of alkanes, a system with two (or more) equivalents of AIX3 was fonnd by Volpin to be extremely reactive, also bringing abont other electrophilic reactions. [Pg.194]

We found a way to overcome charge-charge repulsion when activating the nitronium ion when Tewis acids were used instead of strong Bronsted acids. The Friedel-Crafts nitration of deactivated aromatics and some aliphatic hydrocarbons was efficiently carried out with the NO2CI/3AICI3 system. In this case, the nitronium ion is coordinated to AICI3. [Pg.200]

To explain how solid acids such as Nafion-H or HZSM-5 can show remarkable catalytic activity in hydrocarbon transformations, the nature of activation at the acidie sites of such solid acids must be eon-sidered. Nafion-H contains acidic -SO3H groups in clustered pockets. In the acidic zeolite H-ZSM-5 the active Bronsted and Tewis acid sites are in close proximity (—2.5 A). [Pg.201]

Raman spectroscopy has provided information on catalytically active transition metal oxide species (e. g. V, Nb, Cr, Mo, W, and Re) present on the surface of different oxide supports (e.g. alumina, titania, zirconia, niobia, and silica). The structures of the surface metal oxide species were reflected in the terminal M=0 and bridging M-O-M vibrations. The location of the surface metal oxide species on the oxide supports was determined by monitoring the specific surface hydroxyls of the support that were being titrated. The surface coverage of the metal oxide species on the oxide supports could be quantitatively obtained, because at monolayer coverage all the reactive surface hydroxyls were titrated and additional metal oxide resulted in the formation of crystalline metal oxide particles. The nature of surface Lewis and Bronsted acid sites in supported metal oxide catalysts has been determined by adsorbing probe mole-... [Pg.261]

Acid-treated clays were the first catalysts used in catalytic cracking processes, but have been replaced by synthetic amorphous silica-alumina, which is more active and stable. Incorporating zeolites (crystalline alumina-silica) with the silica/alumina catalyst improves selectivity towards aromatics. These catalysts have both Fewis and Bronsted acid sites that promote carbonium ion formation. An important structural feature of zeolites is the presence of holes in the crystal lattice, which are formed by the silica-alumina tetrahedra. Each tetrahedron is made of four oxygen anions with either an aluminum or a silicon cation in the center. Each oxygen anion with a -2 oxidation state is shared between either two silicon, two aluminum, or an aluminum and a silicon cation. [Pg.70]

Bronsted-acid-catalyzed Diels-Alder reactions are not frequent because of the proton sensitivity of many dienes and cycloadducts, especially when long reaction times and high temperatures are required. Examples in aqueous medium involving imines activated by protonation as dienophiles and a proton-promoted Diels-Alder reaction of glyoxylic acid with cyclopentadiene are considered in Section 6.1. [Pg.185]

The isomorphic substituted aluminum atom within the zeolite framework has a negative charge that is compensated by a counterion. When the counterion is a proton, a Bronsted acid site is created. Moreover, framework oxygen atoms can give rise to weak Lewis base activity. Noble metal ions can be introduced by ion exchanging the cations after synthesis. Incorporation of metals like Ti, V, Fe, and Cr in the framework can provide the zeolite with activity for redox reactions. [Pg.213]

Bronsted acidity is the principal source of activity with the relative concentration of protonated and non-protonated reactants being dependent upon the nature of the exchangeable cation. Using FeCls - graphite intercalates - formed using a photochemical procedure and subsequently reduced using K/naphthalide - an efficient catalyst for the production of acetylene from syngas has been produced. [Pg.472]

At an industrial scale, the esterification catalyst must fulfill several conditions that may not seem so important at lab-scale. This must be very active and selective as by-products are likely to render the process uneconomical, water-tolerant and stable at relatively high temperatures. In addition, it should be an inexpensive material that is readily available on an industrial scale. In a previous study we investigated metal oxides with strong Bronsted acid sites and high thermal stability. Based on the literature reviews and our previous experimental screening, we focus here on application of metal oxide catalysts based on Zr, Ti, and Sn. [Pg.292]

Montmorillonite K10 was also used for aldol the reaction in water.280 Hydrates of aldehydes such as glyoxylic acid can be used directly. Thermal treatment of K10 increased the catalytic activity. The catalytic activity is attributed to the structural features of K10 and its inherent Bronsted acidity. The aldol reactions of more reactive ketene silyl acetals with reactive aldehydes proceed smoothly in water to afford the corresponding aldol products in good yields (Eq. 8.104).281... [Pg.274]

It has also been shown that dimethylsilyl enolates can be activated by diisopropylamine and water and exhibit a high reactivity toward iV-tosyl imines to give Mannich-type reaction products in the absence of a Fewis acid or a Bronsted acid.51 For example, the reaction of [(1-cyclohexen-l-yl)oxy]dimethylsilane with 4-methyl-A -(phenylmethylene)benzene sulfonamide gave re/-4-methyl-N- (f )-[(15)-(2-oxocyclohexyl)phenyl-methyl] benzenesulfonamide (anti-isomer) in 91% yield stereoselectively (99 1 anti syn) (Eq. 11.30). On the other hand, Fi and co-workers reported a ruthenium-catalyzed tandem olefin migration/aldol and Mannich-type reactions by reacting allyl alcohol and imine in protic solvents.52... [Pg.350]

The LPDE system is applied to several reactions in which the metal ions coordinate to the lone pairs of heteroatoms, thereby activating the substrate. Initially, the effectiveness was shown in Diels Alder reactions (Scheme 1). In a highly concentrated (5.0 M) LPDE solution, Diels- Alder reactions proceeded smoothly.6-7 Generally, a catalytic amount of LiC104 is not effective in this reaction. In some cases, a catalytic amount of an additional Bronsted acid, such as camphorsulphonic acid (CSA), gives better results.8 An interesting double activation of carbonyl moieties by using dilithium compounds has been reported (compound... [Pg.400]

Recrystallization procedure applied to the amorphous aluminosilicates of different chemical composition resulted in the formation of the dispersed zeolitic domains of the FAU and BEA structure in porous matrices. The structural transformation into the composite material was proved with TEM, XRD and 27Al and 29Si MAS NMR spectroscopies. The IR data revealed that strong Bronsted acid centers were main active sites generated in the composite materials, irrespectively of the Al content. [Pg.96]

DRIFT spectroscopy was used to determine Av0h shifts, induced by adsorption of N2 and hexane for zeolite H-ZSM-5 (ZSM-a and ZSM-b, Si/Al=15.5 and 26), H-mordenite (Mor-a and Mor-b, Si/AI— 6.8 and 10) and H-Y (Y-a and Y-b, Si/Al=2.5 and 10.4) samples. Catalysts were activated in 02 flow at 773 K in situ in the DRIFTS cell and contacted than with N2 at pressures up to 9 bar at 298 K or with 6.1% hexane/He mixture at 553 K, i.e., under reaction conditions. Catalytic activities of the solids were measured in a flow-through microreactor and kapp was obtained as slope of -ln(l-X0) vs. W/F plots. The concentration of Bronsted acid sites was determined by measuring the NH4+ ion-exchange capacity of the zeolite. The site specific apparent rate constant, TOFBapp, was obtained as the ratio of kapp and the concentration of Bronsted acid sites. [Pg.122]


See other pages where Activations Bronsted acids is mentioned: [Pg.52]    [Pg.188]    [Pg.57]    [Pg.283]    [Pg.434]    [Pg.625]    [Pg.52]    [Pg.188]    [Pg.57]    [Pg.283]    [Pg.434]    [Pg.625]    [Pg.2711]    [Pg.709]    [Pg.228]    [Pg.86]    [Pg.263]    [Pg.121]    [Pg.43]    [Pg.79]    [Pg.82]    [Pg.83]    [Pg.257]    [Pg.150]    [Pg.498]    [Pg.104]    [Pg.105]    [Pg.489]    [Pg.428]    [Pg.71]    [Pg.10]    [Pg.107]    [Pg.252]    [Pg.283]    [Pg.331]    [Pg.357]    [Pg.17]    [Pg.190]    [Pg.93]   
See also in sourсe #XX -- [ Pg.1142 ]




SEARCH



Bronsted acid

Bronsted acidity

© 2024 chempedia.info