Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bronsted catalyst

Chiral Bronsted acids can also promote the asymmetric addition of allylic tin reagents to carbonyl compounds. Baba and coworkers have found that a stoichiometric amount of (fl)-BINOL (37) acts a chiral promoter for the allylation of unactivated ketones with tetraallyltin and in the presence of MeOH, the corresponding nonracemic tertiary homoallylic alcohols are obtained with up to 60% ee [50]. Later, Woodward et al. improved this process and achieved a catalytic enantioselective allylation of aryl ketones by employing (fl)-monothio-binaphthol 36 as a chiral Bronsted catalyst [49]. For instance, in the presence of 20 mol% of the chiral acid 36 and 40 mol% of H20 in toluene, acetophenone (42) was allylated by a 0.7 0.3 mixture of tetraallyltin (41) and butyltriallylltin (55) to give the (jR)-enriched allylated product 56 almost quantitatively with 89-86% ee (Scheme 8). [Pg.121]

Ahrendt KA, Borths CJ, MacMillan DWC (2000) New strategies for organic catalysis The first highly enantioselective organocatalytic Diels-Alder reaction. J Am Chem Soc 122 4243-4244 Akiyama T (2004) Preparation of chiral Bronsted catalysts in asym. synthesis and asym. Mannich, aza-Diels-Alder reaction, hydrophosphorylation therewith. PCT Int Appl WO 200409675, 2004-11-11... [Pg.35]

Protic imidazolium and alkoxyimidazolium based ionic liquids as both solvents and Bronsted catalysts for catalytic reactions have been synthesized (Fig. 9) [58],... [Pg.377]

The CeY zeolite is utilized for the preparation of 4-methylcoumarin by the reaction of phenol with AAN. The formation of PA represents the first step the subsequent acylation at the ortho position, followed by an intramolecular aldol-like condensation, affords the final 4-methylcoumarin in 75% yield (Scheme 5.8). In the entire process, the cerium-catalyst shows a bifunctional character the active centers in the supercage of CeY zeolite, the Ce + ions, act as Lewis acid catalysts, whereas the acid centers H+, formed by the dissociation of water according to the equation Ce + + H2O [Ce(OH)]2+ + H+, act as Bronsted catalysts. [Pg.163]

A nanostructured scandium-containing polymer was also successfully used in the condensation of aldehydes, aromatic amines, and silyl enol ethers to give the corresponding /3-aminoketones, but the observed diastereoselectivities were moderate. Cai and coworkers reported the use of sulfonated amino acids as efficient Bronsted catalysts in direct diastereo-and regioselective Mannich reactions in water. ... [Pg.245]

Raman spectroscopy has provided information on catalytically active transition metal oxide species (e. g. V, Nb, Cr, Mo, W, and Re) present on the surface of different oxide supports (e.g. alumina, titania, zirconia, niobia, and silica). The structures of the surface metal oxide species were reflected in the terminal M=0 and bridging M-O-M vibrations. The location of the surface metal oxide species on the oxide supports was determined by monitoring the specific surface hydroxyls of the support that were being titrated. The surface coverage of the metal oxide species on the oxide supports could be quantitatively obtained, because at monolayer coverage all the reactive surface hydroxyls were titrated and additional metal oxide resulted in the formation of crystalline metal oxide particles. The nature of surface Lewis and Bronsted acid sites in supported metal oxide catalysts has been determined by adsorbing probe mole-... [Pg.261]

Figure 4.10 is plot of the Bronsted relationship for hydrolysis of an enol ether. The plot shows that the effectiveness of the various carboxylic acids as catalysts is related to their dissociation constants. In this particular case, the constant a is 0.79 ... [Pg.231]

A number of studies of the acid-catalyzed mechanism of enolization have been done. The case of cyclohexanone is illustrative. The reaction is catalyzed by various carboxylic acids and substituted ammonium ions. The effectiveness of these proton donors as catalysts correlates with their pK values. When plotted according to the Bronsted catalysis law (Section 4.8), the value of the slope a is 0.74. When deuterium or tritium is introduced in the a position, there is a marked decrease in the rate of acid-catalyzed enolization h/ d 5. This kinetic isotope effect indicates that the C—H bond cleavage is part of the rate-determining step. The generally accepted mechanism for acid-catalyzed enolization pictures the rate-determining step as deprotonation of the protonated ketone ... [Pg.426]

By determining ha for several different buffer catalysts and each of several alkoxy leaving groups, it was determined that there was a relationship between the Bronsted eoeffieient a and the strueture of the alkoxy leaving group. The data are given and show that a deereases as the alkoxy group beeomes less basie. [Pg.497]

Reaction of 1 mole of aminals 352 with 4 mol of methyl 3-aminocrotonate in the presence of the solid acids montmorillonte clay (Kio) and ZF520 zeolite as strong Bronsted acidic catalysts, gave 1,4-dihydropyridines 353 and 2-methyl-4//-pyrido[l, 2-n]pyrimidin-4-one (99MI8). [Pg.243]

Acid-treated clays were the first catalysts used in catalytic cracking processes, but have been replaced by synthetic amorphous silica-alumina, which is more active and stable. Incorporating zeolites (crystalline alumina-silica) with the silica/alumina catalyst improves selectivity towards aromatics. These catalysts have both Fewis and Bronsted acid sites that promote carbonium ion formation. An important structural feature of zeolites is the presence of holes in the crystal lattice, which are formed by the silica-alumina tetrahedra. Each tetrahedron is made of four oxygen anions with either an aluminum or a silicon cation in the center. Each oxygen anion with a -2 oxidation state is shared between either two silicon, two aluminum, or an aluminum and a silicon cation. [Pg.70]

Benzene can be alkylated in the presence of a Lewis or a Bronsted acid catalyst. Olefins such as ethylene, propylene, and C12-C14 alpha olefins are used to produce benzene alkylates, which have great commercial value. Alkyl halides such as monochloroparaffms in the C12-C14 range also serve this purpose. [Pg.263]

The catalyst acid sites are both Bronsted and Lewis type. The catalyst can have either strong or weak Bronsted sites or, strong i)i weak Lewis sites. A Bronsted-type acid is a substance capable of donating a proton. Hydrochloric and sulfuric acids are typical Bronsted acids. A Lewis-type acid is a substance that accepts a pair of electrons. Lewis acids may not have hydrogen in them but they are still acids. Aluminum chloride is the classic example of a Lewis acid. Dissolved in water, it will react with hydroxyl, causing a drop in solution pH. [Pg.131]

Catalyst acid properties depend on several parameters, including method of preparation, dehydration temperature, silica-to-alumina ratio, and the ratio of Bronsted to Lewis acid sites. [Pg.131]

A carbonium ion, CHj, is formed by adding a hydrogen ion (H ) to a paraffin molecule (Equation 4-6). This is accomplished via direct attack of a proton from the catalyst Bronsted site. The resulting molecule will have a positive charge with 5 bonds to it. [Pg.131]

Both the Bronsted and Lewis acid sites on the catalyst generate carbenium ions. The Bronsted site donates a proton to an olefin molecule and the Lewis site removes electrons from a paraffin molecule. In commercial units, olefins come in with the feed or are produced through thermal cracking reactions. [Pg.132]

Another conceptually unique approach in alkene aziridination has come from Johnston s labs. These workers shrewdly identified organic azides as nitrene equivalents when these compounds are in the amide anion/diazonium resonance form. Thus, when a range of azides were treated with triflic acid and methyl vinyl ketone at 0 °C, the corresponding aziridines were obtained, in synthetically useful yields. In the absence of the Bronsted acid catalyst, cycloaddition is observed, producing triazolines. The method may also be adapted, through the use of unsaturated imi-des as substrates, to give anti-aminooxazolidinones (Scheme 4.25) [32]. [Pg.129]

This review will endeavor to outline some of the advantages of Raman Spectroscopy and so stimulate interest among workers in the field of surface chemistry to utilize Raman Spectroscopy in the study of surface phenomena. Up to the present time, most of the work has been directed to adsorption on oxide surfaces such as silicas and aluminas. An examination of the spectrum of a molecule adsorbed on such a surface may reveal information as to whether the molecule is physically or chemically adsorbed and whether the adsorption site is a Lewis acid site (an electron deficient site which can accept electrons from the adsorbate molecule) or a Bronsted acid site (a site which can donate a proton to an adsorbate molecule). A specific example of a surface having both Lewis and Bronsted acid sites is provided by silica-aluminas which are used as cracking catalysts. [Pg.294]

Write the balanced chemical equation for (a) the thermal decomposition of potassium chlorate without a catalyst (b) the reaction of bromine with water (c) the reaction between sodium chloride and concentrated sulfuric acid, (d) Identify each reaction as a Bronsted acid—base, Lewis acid—base, or redox reaction. [Pg.772]

Nafion-H (144), a perfluorinated resin-sulfonic acid, is an efficient Bronsted-acid catalyst which has two advantages it requires only catalytic amounts since it forms reversible complexes, and it avoids the destruction and separation of the catalyst upon completion of the reaction [94], Thus in the presence of Nafion-H, 1,4-benzoquinone and isoprene give the Diels-Alder adduct in 80% yield at 25 °C, and 1,3-cyclohexadiene reacts with acrolein at 25 °C affording 88 % of cycloadduct after 40 h, while the uncatalyzed reactions give very low yields after boiling for 1 h or at 100 °C for 3.5 h respectively [95], Other examples are given in Table 4.24. In the acid-catalyzed reactions that use highly reactive dienes such as isoprene and 2,3-dimethylbutadiene, polymerization of alkenes usually occurs with Nafion-H, no polymerization was observed. [Pg.189]

Iron porphyrins (containing TPP, picket fence porphyrin, or a basket handle porphyrin) catalyzed the electrochemical reduction of CO2 to CO at the Fe(I)/Fe(0) wave in DMF, although the catalyst was destroyed after a few cycles. Addition of a Lewis acid, for example Mg , dramatically improved the rate, the production of CO, and the stability of the catalyst. The mechanism was proposed to proceed by reaction of the reduced iron porphyrin Fe(Por)] with COi to form a carbene-type intermediate [Fe(Por)=C(0 )2, in which the presence of the Lewis acid facilitates C—O bond breaking. " The addition of a Bronsted acid (CF3CH2OH, n-PrOH or 2-pyrrolidone) also results in improved catalyst efficiency and lifetime, with turnover numbers up to. 750 per hour observed. ... [Pg.258]

The previous sections have shown that desihcation of ZSM-5 zeohtes results in combined micro- and mesoporous materials with a high degree of tunable porosity and fuUy preserved Bronsted acidic properties. In contrast, dealumination hardly induces any mesoporosityin ZSM-5 zeolites, due to the relatively low concentration of framework aluminum that can be extracted, but obviously impacts on the acidic properties. Combination of both treatments enables an independent tailoring of the porous and acidic properties providing a refined flexibility in zeolite catalyst design. Indeed, desihcation followed by a steam treatment to induce dealumination creates mesoporous zeolites with extra-framework aluminum species providing Lewis acidic functions [56]. [Pg.43]

Bronsted acidity is the principal source of activity with the relative concentration of protonated and non-protonated reactants being dependent upon the nature of the exchangeable cation. Using FeCls - graphite intercalates - formed using a photochemical procedure and subsequently reduced using K/naphthalide - an efficient catalyst for the production of acetylene from syngas has been produced. [Pg.472]

Figures 2.a-c show the pyridine adsorption results. Bronsted acidity is manifested by the bands at 1440-1445,1630-1640 and 1530-1550 cm . Bands at 1600-1630 cm are assigned to pyridine bonded to Lewis acid sites. Certain bands such as the 1440-1460 and 1480-1490 cm can be due to hydrogen-bonded, protonated or Lewis-coordinated pyridine species. Under continuous nitrogen purging, spectra labeled as "A" in Figures 2a-c represent saturation of the surface at room temperature (90 25 unol pyridine/g found in all three tungsta catalysts) and "F" show the baseline due to the dry catalyst. We cannot entirely rule out the possibility of some extent of weakly bound pyridine at room temperature. Nevertheless, the pyridine DRIFTS experiments show the presence of Brpnsted acidity, which is expected to be the result of water of reduction that did not desorb upon purging at the reduction temperature. It is noted that, regardless of the presence of Pt, the intensity of the DRIFTS signals due to pyridine are... Figures 2.a-c show the pyridine adsorption results. Bronsted acidity is manifested by the bands at 1440-1445,1630-1640 and 1530-1550 cm . Bands at 1600-1630 cm are assigned to pyridine bonded to Lewis acid sites. Certain bands such as the 1440-1460 and 1480-1490 cm can be due to hydrogen-bonded, protonated or Lewis-coordinated pyridine species. Under continuous nitrogen purging, spectra labeled as "A" in Figures 2a-c represent saturation of the surface at room temperature (90 25 unol pyridine/g found in all three tungsta catalysts) and "F" show the baseline due to the dry catalyst. We cannot entirely rule out the possibility of some extent of weakly bound pyridine at room temperature. Nevertheless, the pyridine DRIFTS experiments show the presence of Brpnsted acidity, which is expected to be the result of water of reduction that did not desorb upon purging at the reduction temperature. It is noted that, regardless of the presence of Pt, the intensity of the DRIFTS signals due to pyridine are...

See other pages where Bronsted catalyst is mentioned: [Pg.369]    [Pg.369]    [Pg.2711]    [Pg.2783]    [Pg.709]    [Pg.93]    [Pg.128]    [Pg.228]    [Pg.328]    [Pg.329]    [Pg.119]    [Pg.212]    [Pg.214]    [Pg.806]    [Pg.102]    [Pg.360]    [Pg.121]    [Pg.188]    [Pg.34]    [Pg.79]    [Pg.106]    [Pg.149]    [Pg.150]    [Pg.193]    [Pg.498]    [Pg.273]    [Pg.489]    [Pg.604]   
See also in sourсe #XX -- [ Pg.94 ]




SEARCH



Acid zeolite catalysts Bronsted type

BrOnsted acids catalysts

Bronsted Base-Derived Thiourea Catalysts

Bronsted acid-surfactant combined catalysts

Bronsted acids, as catalysts

Bronsted add catalysts

Bronsted bifunctional catalysts

Bronsted catalyst design

Bronsted catalysts, phosphoric acid

Bronsted difference from hydrogen bond catalyst

Bronsted thiourea catalysts

Bronsted-Lewis superacid catalysts

Catalyst Bronsted base asymmetric

Catalysts Bronsted acid sites

Chiral Bronsted acid catalysts

Cinchona catalysts Bronsted bases

Design chiral Bronsted acid catalysts

Enantioselective Bronsted acid catalysts

General Bronsted acid catalysts

Heterogeneous catalyst Bronsted acid sites

Homogeneous Bronsted acid catalysts

Lewis Acid-Bronsted Base Catalyst

Lewis/Bronsted acid catalysts

Solid acid catalysts Bronsted acidic strengths

Stronger Bronsted Acid Catalysts

Super Bronsted acid catalyst

© 2024 chempedia.info