Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bronsted acid carboxylic acids

Figure 4.10 is plot of the Bronsted relationship for hydrolysis of an enol ether. The plot shows that the effectiveness of the various carboxylic acids as catalysts is related to their dissociation constants. In this particular case, the constant a is 0.79 ... [Pg.231]

A number of studies of the acid-catalyzed mechanism of enolization have been done. The case of cyclohexanone is illustrative. The reaction is catalyzed by various carboxylic acids and substituted ammonium ions. The effectiveness of these proton donors as catalysts correlates with their pK values. When plotted according to the Bronsted catalysis law (Section 4.8), the value of the slope a is 0.74. When deuterium or tritium is introduced in the a position, there is a marked decrease in the rate of acid-catalyzed enolization h/ d 5. This kinetic isotope effect indicates that the C—H bond cleavage is part of the rate-determining step. The generally accepted mechanism for acid-catalyzed enolization pictures the rate-determining step as deprotonation of the protonated ketone ... [Pg.426]

Like other Bronsted-Lowry acids discussed in Section 2.7, carboxylic acids dissociate slightly in dilute aqueous solution to give H30+ and the corresponding carboxylate anions, RC02. The extent of dissociation is given by an acidity constant, Ka. [Pg.755]

The ionization of (E)-diazo methyl ethers is catalyzed by the general acid mechanism, as shown by Broxton and Stray (1980, 1982) using acetic acid and six other aliphatic and aromatic carboxylic acids. The observation of general acid catalysis is evidence that proton transfer occurs in the rate-determining part of the reaction (Scheme 6-5). The Bronsted a value is 0.32, which indicates that in the transition state the proton is still closer to the carboxylic acid than to the oxygen atom of the methanol to be formed. If the benzene ring of the diazo ether (Ar in Scheme 6-5) contains a carboxy group in the 2-position, intramolecular acid catalysis is observed (Broxton and McLeish, 1983). [Pg.113]

Particularly, some newly developed drags, which incorporate the N-acyl sulfonamide moiety [8-10], are synthesized from the parent sulfonamides, by their coupling with acid chlorides or carboxylic anhydrides in basic conditions [11-15]. Unfortunately all these methods lead to substantial waste products. Less common reports mentioning this transformation under acidic conditions (Bronsted or Lewis acids) do not systematically examine the purpose and limitations of the reaction [16]. [Pg.425]

As corroborated by deuterium labeling studies, the catalytic mechanism likely involves oxidative dimerization of acetylene to form a rhodacyclopen-tadiene [113] followed by carbonyl insertion [114,115]. Protonolytic cleavage of the resulting oxarhodacycloheptadiene by the Bronsted acid co-catalyst gives rise to a vinyl rhodium carboxylate, which upon hydrogenolysis through a six-centered transition structure and subsequent C - H reductive elimina-... [Pg.103]

Proton donor (Bronsted-Lowry acid) example carboxylic acid... [Pg.1]

The direct electrochemical reduction of carbon dioxide requires very negative potentials, more negative than —2V vs. SCE. Redox catalysis, which implies the intermediacy of C02 (E° = —2.2 V vs. SCE), is accordingly rather inefficient.3 With aromatic anion radicals, catalysis is hampered in most cases by a two-electron carboxylation of the aromatic ring. Spectacular chemical catalysis is obtained with electrochemically generated iron(0) porphyrins, but the help of a synergistic effect of Bronsted and Lewis acids is required.4... [Pg.260]

Another example is the separation of several sulfonamides in acetonitrile by adding silver ions. Compounds such as N-containing heterocyclics were found to build selective charge transfer complexes with Ag+, which improves the selectivity of the separation. Phenols, carboxylic acids, and alcohols interact with anions such as CIO, BE, NO, Cl t,SO , and Cl in acetonitrile as solvent. The resulting electrophoretic mobility of the weak Bronsted acids (HA) in the presence of such anions is the result of the formation of complexes of the type [X. .. HA] due to the formation of hydrogen bonds (13). [Pg.39]

A well-defined chiral pocket produced by the binaphthyl skeleton and the appended bulky 3,3 substituents, (iii) A ring structure attached to the phosphoric acid moiety to prevent free rotation at the a-position of the phosphorus center. This feature is not found in other Bronsted acids such as carboxylic and sulfonic acids (Figure 5.2). [Pg.75]

Bruice and Schmir (3) have shown that for a series of imidazole derivatives, klm depends on the base strength of the catalyst and since pKA is an approximate measure of base strength, the value of klm should increase with increase in pKA. Table I shows that this is indeed the case. Imidazole, pKA = 7.08, has a catalytic constant eight times larger than that of benzimidazole, pKA = 5.53. Bronsted and Guggenheim (2) have obtained a linear relationship between log k/ and pKA for a series of carboxylic acids in the pKA range of 2 to 5, where kB is the carboxvlate anion basic catalytic constant for the mutarotation of glucose and Ka is the acid dissociation constant of the acid. Our results for imidazole and benzimidazole fit fairly well into the Bronsted plot. [Pg.180]

We can consider decarboxylation reactions in terms that are analogous to those in proton transfer reactions the reactivity of the carbanion in carboxylation reactions is analogous to internal return observed in proton transfer reactions from Bronsted acids. Kresge61 estimated that the rate constant for protonation of the acetylide anion, a localized carbanion (P A 21), is the same as the diffusional limit (1010 M s1). However, achieving this rate is highly dependent on the extent of localization of the carbanion. Jordan62 has shown that intermediates in thiazolium derivatives are also likely to be localized carbanions, which implies that protonation of these intermediates could occur at rates approaching those of other localized carbanions. [Pg.368]

L-Proline is perhaps the most well-known organocatalyst. Although the natural L-form is normally used, proline is available in both enantiomeric forms [57], this being somewhat of an asset when compared to enzymatic catalysis [58], Proline is the only natural amino acid to exhibit genuine secondary amine functionality thus, the nitrogen atom has a higher p Ka than other amino acids and so features an enhanced nucleophilicity compared to the other amino acids. Hence, proline is able to act as a nucleophile, in particular with carbonyl compounds or Michael acceptors, to form either an iminium ion or enamine. In these reactions, the carboxylic function of the amino acid acts as a Bronsted acid, rendering the proline a bifunctional catalyst. [Pg.9]

There have now been a number of tests of equation (9) for A-SE2 reactions (see Table 1), and some of the results are shown in Figs. 2a-c. It is accurately obeyed by catalytic coefficients for carboxylic acids, but other classes of acids give rise to systematic deviations. Phosphoric acid and bisulfate ion seem always to be above the line generated by carboxylic acids, and H+, if its conjugate base, H20, is considered to be present in 55m concentration, is always below this line. Other homogeneous classes of acids, such as anilinium ions, may give rise to separate Bronsted lines (Thomas and Long, 1964). These deviations would seem to imply that the three-center model is at least oversimplified. [Pg.67]

The nickel and palladium compounds described above are useful in processes for polymerising various olefins, and optionally also for copolymerising olefinic esters, carboxylic acids or other functional olefins with these olefins. When (I) is used as a catalyst, a neutral Lewis acid or a cationic Lewis or Bronsted acid whose counterion is a weakly coordinating anion is also present as part of the catalyst system. The neutral Lewis acid is originally uncharged (i.e. not ionic). Suitable neutral Lewis acids include SbFs, A B and BF3. By a cationic Lewis acid is meant a cation with a positive charge such as Ag+, H+ and Na+. [Pg.219]

Tertiary alcohols, tertiary ethers, or carboxylic acid esters of tertiary alcohols can undergo El eliminations, but only in the presence of Bronsted or Lewis acids. Anyone who has prepared a tertiary alkoxide by a Grignard reaction and treated the crude reaction mixture with HC1 and obtained the alkene knows that tertiary alcohols can be converted into alkenes even with dilute hydrochloric acid. [Pg.181]

The first reagent combination, carboxylic acid chloride/A1C13, reacts via the A1C13 complex A of the acid chloride or via the acylium tetrachloroaluminate B formed from it by /)-elimination. A carboxylic acid anhydride and A1C13 react via analogous electrophiles, namely via the A1C13 complex D of the anhydride or via the acylium salt E formed therefore by a /T elimination. The protonated anhydride F and the protonated carboxylic acid C are the reactive electrophiles of the Friedel-Crafts acylations catalyzed by Bronsted acids. [Pg.229]

In the presence of an electrophile, tautomerization of a substrate with a C=0 double bond to its enol only takes place when catalyzed by either a Bronsted- or a Lewis acid. The proton-catalyzed mechanism is shown for the ketone — enol conversion B — iso-B (Figure 12.4), the carboxylic acid —> enol conversion A — E (Figure 12.6), the carboxylic acid bromide — enol conversion E —> G (Figure 12.7) and the carboxylic acid ester — enol conversion diethyl-malonate —> E (Figure 12.9). Each of these enol formations is a two-step process consisting of the protonation to a carboxonium ion and the latter s deprotonation. The mechanism of a Lewis acid-catalyzed enolization is illustrated in Figure 12.5, exemplified by the ketone —> enol conversion A —> iso-A. Again, a protonation to a carboxonium ion and the latter s deprotonation are involved the Lewis acid-complexed ketone acts as a proton source (see below). [Pg.493]


See other pages where Bronsted acid carboxylic acids is mentioned: [Pg.93]    [Pg.215]    [Pg.437]    [Pg.97]    [Pg.82]    [Pg.102]    [Pg.180]    [Pg.95]    [Pg.190]    [Pg.142]    [Pg.49]    [Pg.84]    [Pg.45]    [Pg.792]    [Pg.192]    [Pg.200]    [Pg.379]    [Pg.258]    [Pg.121]    [Pg.229]    [Pg.336]    [Pg.118]    [Pg.434]    [Pg.427]    [Pg.94]    [Pg.120]    [Pg.281]    [Pg.733]    [Pg.94]    [Pg.212]    [Pg.248]   


SEARCH



Bronsted acid

Bronsted acidity

© 2024 chempedia.info