Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Boiling point , effect pressure

PFE is based on the adjustment of known extraction conditions of traditional solvent extraction to higher temperatures and pressures. The main reasons for enhanced extraction performance at elevated temperature and pressure are (i) solubility and mass transfer effects and (ii) disruption of surface equilibria [487]. In PFE, a certain minimum pressure is required to maintain the extraction solvent in the liquid state at a temperature above the atmospheric boiling point. High pressure elevates the boiling point of the solvent and also enhances penetration of the solvent into the sample matrix. This accelerates the desorption of analytes from the sample surface and their dissolution into the solvent. The final result is improved extraction efficiency along with short extraction time and low solvent requirements. While pressures well above the values required to keep the extraction solvent from boiling should be used, no influence on the ASE extraction efficiency is noticeable by variations from 100 to 300 bar [122]. [Pg.117]

The dissolution of a solute into a solvent perturbs the colligative properties of the solvent, affecting the freezing point, boiling point, vapor pressure, and osmotic pressure. The dissolution of solutes into a volatile solvent system will affect the vapor pressure of that solvent, and an ideal solution is one for which the degree of vapor pressure change is proportional to the concentration of solute. It was established by Raoult in 1888 that the effect on vapor pressure would be proportional to the mole fraction of solute, and independent of temperature. This behavior is illustrated in Fig. 10A, where individual vapor pressure curves are... [Pg.27]

Table I shows that, as the boiling point of the hydrocarbon used as the entrainer increases so does that of the azeotrope with water and the percent of water therein. A high percentage of water in the azeotrope is desired for the heat required for the distillation, which is mainly that of the latent heat of the water plus that of the entrainer. Sufficient entrainer should be available in the azeotrope for reflux to the column although this requirement is not large. Also, the solubility or dilution effect is better with lower-boiling hydrocarbons. Thus there are several factors to be balanced in choosing the azeotrope. The effect of relative boiling points, vapor pressures, and amounts of different entrainers in their azeotropes with water has been discussed as affecting the choice of entrainers for separating water from acetic acid (5). However, that represents a much more difficult selection because there the quantity of reflux is important and also the solvent characteristics of the entrainer for the acetic acid also control the choice. Table I shows that, as the boiling point of the hydrocarbon used as the entrainer increases so does that of the azeotrope with water and the percent of water therein. A high percentage of water in the azeotrope is desired for the heat required for the distillation, which is mainly that of the latent heat of the water plus that of the entrainer. Sufficient entrainer should be available in the azeotrope for reflux to the column although this requirement is not large. Also, the solubility or dilution effect is better with lower-boiling hydrocarbons. Thus there are several factors to be balanced in choosing the azeotrope. The effect of relative boiling points, vapor pressures, and amounts of different entrainers in their azeotropes with water has been discussed as affecting the choice of entrainers for separating water from acetic acid (5). However, that represents a much more difficult selection because there the quantity of reflux is important and also the solvent characteristics of the entrainer for the acetic acid also control the choice.
Boiling points are pressure dependent because pressure has a large effect on the entropy of a gas. When a gas is expanded (pressure is decreased), its entropy increases because the degree of disorder of the molecules increases. At sea level, water boils at 100°C. In Denver, Colorado, where the elevation is 1.6 km, atmospheric pressure is about 0.84 times the pressure at sea level. At that elevation, water boils at about 95°C. On Pike s Peak, where the elevation is 4.3 km, water boils at about 85°C. People often use pressure cookers at that altitude to increase the boiling point of water. [Pg.416]

A further OECD Council Decision in 1991 focused on HPV chemicals. These decisions prompted the development of a minimum hazard data set to describe an HPV chemical - the Screening Information Data Set, or SIDS. This includes physicochemical properties (melting point, boiling point, vapor pressure, water solubility, and octanol-water partition coefficient) environmental fate (stability in water, photodegradation, biodegradation, and an estimate of distribution/transport in the environment) environmental effects (acute toxicity to aquatic vertebrates, invertebrates, and plants) and human health effects (acute toxicity, repeated-dose toxicity, toxicity to the gene and the chromosome, and reproductive and developmental toxicity). [Pg.1337]

While toluene would have a relative volatihty with respect to ethylbenzene at atmospheric pressure of 2.1, it would have a relative volatility of 2.23 at 84.5 °C as expected from the boiling point effect of the Cox chart B values of toluene and ethylbenzene. [Pg.91]

One of the most significant sources of change in isotope ratios is caused by the small mass differences between isotopes and their effects on the physical properties of elements and compounds. For example, ordinary water (mostly Ej O) has a lower density, lower boiling point, and higher vapor pressure than does heavy water (mostly H2 0). Other major changes can occur through exchange processes. Such physical and kinetic differences lead to natural local fractionation of isotopes. Artificial fractionation (enrichment or depletion) of uranium isotopes is the basis for construction of atomic bombs, nuclear power reactors, and depleted uranium weapons. [Pg.353]

The only method utilized commercially is vapor-phase nitration of propane, although methane (70), ethane, and butane also can be nitrated quite readily. The data in Table 5 show the typical distribution of nitroparaffins obtained from the nitration of propane with nitric acid at different temperatures (71). Nitrogen dioxide can be used for nitration, but its low boiling point (21°C) limits its effectiveness, except at increased pressure. Nitrogen pentoxide is a powerful nitrating agent for alkanes however, it is expensive and often gives polynitrated products. [Pg.101]

Purification. Tellurium can be purified by distillation at ambient pressure in a hydrogen atmosphere. However, because of its high boiling point, tellurium is also distilled at low pressures. Heavy metal (iron, tin, lead, antimony, and bismuth) impurities remain in the still residue, although selenium is effectively removed if hydrogen distillation is used (21). [Pg.386]

Most theories of droplet combustion assume a spherical, symmetrical droplet surrounded by a spherical flame, for which the radii of the droplet and the flame are denoted by and respectively. The flame is supported by the fuel diffusing from the droplet surface and the oxidant from the outside. The heat produced in the combustion zone ensures evaporation of the droplet and consequently the fuel supply. Other assumptions that further restrict the model include (/) the rate of chemical reaction is much higher than the rate of diffusion and hence the reaction is completed in a flame front of infinitesimal thickness (2) the droplet is made up of pure Hquid fuel (J) the composition of the ambient atmosphere far away from the droplet is constant and does not depend on the combustion process (4) combustion occurs under steady-state conditions (5) the surface temperature of the droplet is close or equal to the boiling point of the Hquid and (6) the effects of radiation, thermodiffusion, and radial pressure changes are negligible. [Pg.520]

Heat Sensitivity. The heat sensitivity or polymerization tendencies of the materials being distilled influence the economics of distillation. Many materials caimot be distilled at their atmospheric boiling points because of high thermal degradation, polymerization, or other unfavorable reaction effects that are functions of temperature. These systems are distilled under vacuum in order to lower operating temperatures. For such systems, the pressure drop per theoretical stage is frequently the controlling factor in contactor selection. An exceUent discussion of equipment requirements and characteristics of vacuum distillation may be found in Reference 90. [Pg.175]

The heat requirements in batch evaporation are the same as those in continuous evaporation except that the temperature (and sometimes pressure) of the vapor changes during the course of the cycle. Since the enthalpy of water vapor changes but little relative to temperature, the difference between continuous and batch heat requirements is almost always negligible. More important usually is the effect of variation of fluid properties, such as viscosity and boiling-point rise, on heat transfer. These can only be estimated by a step-by-step calculation. [Pg.1145]

The Kellogg and DePriester charts and their subsequent extensions and generahzations use the molar average boiling points of the liquid and vapor phases to represent the composition effect. An alternative measure of composition is the convergence pressure of the system, which is defined as that pressure at which the Kvalues for aU the components in an isothermal mixture converge to unity. It is analogous to the critical point for a pure component in the sense that the two... [Pg.1248]

TABLE 3A. PREDICTED EFFECT OF PRESSURE ON BOILING POINT ... [Pg.32]


See other pages where Boiling point , effect pressure is mentioned: [Pg.601]    [Pg.15]    [Pg.813]    [Pg.29]    [Pg.79]    [Pg.8]    [Pg.738]    [Pg.502]    [Pg.898]    [Pg.209]    [Pg.105]    [Pg.327]    [Pg.1]    [Pg.1090]    [Pg.74]    [Pg.165]    [Pg.388]    [Pg.512]    [Pg.11]    [Pg.11]    [Pg.97]    [Pg.349]    [Pg.37]    [Pg.474]    [Pg.474]    [Pg.477]    [Pg.747]    [Pg.1045]    [Pg.1141]    [Pg.1144]    [Pg.44]   
See also in sourсe #XX -- [ Pg.32 , Pg.33 , Pg.34 ]

See also in sourсe #XX -- [ Pg.8 , Pg.12 , Pg.36 , Pg.37 ]




SEARCH



© 2024 chempedia.info