Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Block copolymers poly derivatives

PS-b-P4VP-based Catalysts In the mid-1990s we developed nanoparticulate catalysts based on block copolymer micelles derived from the polystyrene-felocfe-poly-4-vinylpyridine (PS-b-P4VP) [11, 46]. In selective solvents (toluene and THE) these block copolymers form micelles with the P4VP cores, the latter serve as nanoreactors for metal nanopartide formation. The Pd nanopartides of 2.6 nm... [Pg.96]

Noncrystalline aromatic polycarbonates (qv) and polyesters (polyarylates) and alloys of polycarbonate with other thermoplastics are considered elsewhere, as are aHphatic polyesters derived from natural or biological sources such as poly(3-hydroxybutyrate), poly(glycoHde), or poly(lactide) these, too, are separately covered (see Polymers, environmentally degradable Sutures). Thermoplastic elastomers derived from poly(ester—ether) block copolymers such as PBT/PTMEG-T [82662-36-0] and known by commercial names such as Hytrel and Riteflex are included here in the section on poly(butylene terephthalate). Specific polymers are dealt with largely in order of volume, which puts PET first by virtue of its enormous market volume in bottie resin. [Pg.292]

Polyall lene Oxide Block Copolymers. The higher alkylene oxides derived from propjiene, butylene, styrene (qv), and cyclohexene react with active oxygens in a manner analogous to the reaction of ethylene oxide. Because the hydrophilic oxygen constitutes a smaller proportion of these molecules, the net effect is that the oxides, unlike ethylene oxide, are hydrophobic. The higher oxides are not used commercially as surfactant raw materials except for minor quantities that are employed as chain terminators in polyoxyethylene surfactants to lower the foaming tendency. The hydrophobic nature of propylene oxide units, —CH(CH2)CH20—, has been utilized in several ways in the manufacture of surfactants. Manufacture, properties, and uses of poly(oxyethylene- (9-oxypropylene) have been reviewed (98). [Pg.254]

One of the most noticeable characteristic of MAI is the easy derivation of block copolymers involving poly-... [Pg.757]

Various substituted styrene-alkyl methacrylate block copolymers and all-acrylic block copolymers have been synthesized in a controlled fashion demonstrating predictable molecular weight and narrow molecular weight distributions. Table I depicts various poly (t-butylstyrene)-b-poly(t-butyl methacrylate) (PTBS-PTBMA) and poly(methyl methacrylate)-b-poly(t-butyl methacrylate) (PMMA-PTBMA) samples. In addition, all-acrylic block copolymers based on poly(2-ethylhexyl methacrylate)-b-poly(t-butyl methacrylate) have been recently synthesized and offer many unique possibilities due to the low glass transition temperature of PEHMA. In most cases, a range of 5-25 wt.% of alkyl methacrylate was incorporated into the block copolymer. This composition not only facilitated solubility during subsequent hydrolysis but also limited the maximum level of derived ionic functionality. [Pg.264]

Crivello et al. synthesized block copolymers consisting of poly(DMS) and vinyl polymer sequences to modify the mechanical properties and solvent resistance of poly(DMS). They used tetraphenylethane derivatives incorporated into the poly(DMS) chain through hydrosilylation (Eq. 26) [124-126] ... [Pg.90]

The living radical polymerization of some derivatives of St was carried out. The polymerizations of 4-bromostyrene [254], 4-chloromethylstyrene [255, 256], and other derivatives [257] proceed by a living radical polymerization mechanism to give polymers with well-controlled structures and block copolymers with poly(St). The random copolymerization of St with other vinyl... [Pg.120]

Sawamoto et al. have revealed that the ruthenium complex induces the living radical polymerization of MMA [30,273-277]. For example, RuCl2(PPh)3 provided poly(MMA) with Mw/Mn 1.1 and the block copolymers. This system has a unique characteristic in that it is valid not only for MMA and other methacrylates, but also for acrylates and St derivatives. [Pg.123]

Based on this approach Schouten et al. [254] attached a silane-functionalized styrene derivative (4-trichlorosilylstyrene) on colloidal silica as well as on flat glass substrates and silicon wafers and added a five-fold excess BuLi to create the active surface sites for LASIP in toluene as the solvent. With THF as the reaction medium, the BuLi was found to react not only with the vinyl groups of the styrene derivative but also with the siloxane groups of the substrate. It was found that even under optimized reaction conditions, LASIP from silica and especially from flat surfaces could not be performed in a reproducible manner. Free silanol groups at the surface as well as the ever-present impurities adsorbed on silica, impaired the anionic polymerization. However, living anionic polymerization behavior was found and the polymer load increased linearly with the polymerization time. Polystyrene homopolymer brushes as well as block copolymers of poly(styrene-f)lock-MMA) and poly(styrene-block-isoprene) could be prepared. [Pg.414]

Hoogenboom R, Schubert US, van Camp W et al. (2005) RAFT polymerization of 1-ethoxy ethyl acrylate a novel route toward near-monodisperse poly(acrylic add) and derived block copolymer structures. Macromolecules 38 7653-7659... [Pg.61]

Brunell et al. (2) prepared sulfonated poly(polyetherketone-block-polyethersul-fone) derivatives, (II), which had high proton conductivity at 80°C and were used in fuel cells. Random copolymers,... [Pg.265]

A copolymer derived from monomers comprising a mixture of high density poly(ethylene) (HDPE), a copolymer of ethylene/methacrylic acid, and a synthetic block copolymer rubber such as styrene/butadiene, and... [Pg.282]


See other pages where Block copolymers poly derivatives is mentioned: [Pg.67]    [Pg.418]    [Pg.539]    [Pg.542]    [Pg.517]    [Pg.242]    [Pg.193]    [Pg.304]    [Pg.831]    [Pg.748]    [Pg.26]    [Pg.60]    [Pg.152]    [Pg.516]    [Pg.285]    [Pg.34]    [Pg.43]    [Pg.60]    [Pg.82]    [Pg.453]    [Pg.740]    [Pg.230]    [Pg.449]    [Pg.355]    [Pg.99]    [Pg.44]    [Pg.16]    [Pg.220]    [Pg.644]    [Pg.531]    [Pg.551]    [Pg.81]    [Pg.304]    [Pg.12]    [Pg.254]    [Pg.348]    [Pg.165]   
See also in sourсe #XX -- [ Pg.219 , Pg.220 , Pg.221 , Pg.222 , Pg.223 , Pg.224 , Pg.225 , Pg.226 , Pg.227 , Pg.228 , Pg.229 ]




SEARCH



Block copolymers derivatives

Poly -derived

Poly block

Poly block copolymers

Poly blocking

Poly derivatives

Poly derivatives, block

© 2024 chempedia.info