Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Block copolymers melt state

NMR has not been widely employed to study dynamics in block copolymer melts, although field gradient NMR can provide a wealth of information on the diffusion of block copolymer chains (Fleischer et al. 1993). The orientation of a deuterated homopolymer in a lamellar diblock copolymer (in a glassy state) was determined using 2H NMR by Valic et al. (1994,1995). Other applications of NMR to probe polymer chain dynamics and details of experimental protocols are described by Bovey and Jelinksi (1989). [Pg.12]

A review of the thermodynamics of block copolymer melts prior to the discovery of complex phases was presented by Bates and Fredrickson (1990). Ryan and Hamley (1997) have recently reviewed the morphology of block copolymers containing a glassy component, in the melt and glassy states, and a discussion of complex phases is included. Fredrickson and Bates (1996) and Colby (1996) have reviewed the dynamics of block copolymer melts, of which the former is a par-... [Pg.24]

We will briefly discuss the molecular dynamics results obtained for two systems—protein-like and random-block copolymer melts— described by a Yukawa-type potential with (i) attractive A-A interactions (saa < 0, bb = sab = 0) and with (ii) short-range repulsive interactions between unlike units (sab > 0, aa = bb = 0). The mixtures contain a large number of different components, i.e., different chemical sequences. Each system is in a randomly mixing state at the athermal condition (eap = 0). As the attractive (repulsive) interactions increase, i.e., the temperature decreases, the systems relax to new equilibrium morphologies. [Pg.64]

This wetting picture (Fig. 12 [6]) of surface-induced ordering in block copolymer melts has been considered recently by Milner and Morse [60]. They considered the transition from the state of weak surface-induced order (Fig. 12a) to the case of strong-surface induced order (Fig. 12b) and pointed out that typically a first-order transition may occur between these states, in analogy to the "prewetting transition" first proposed by Cahn [226] (Fig. 14a). This prewetting-type first-order transition may persist in a thin film (Fig. 14b), but it ends in a triple point where the surface excess ( ) is still finite, of course, since no diver-... [Pg.35]

Besides its effects on morphology, comonomer sequence distribution also affects copolymer crystallization kinetics. In statistical copolymers, due to the broad distribution of crystaUizable sequence lengths, bimodal melting endotherms are typically observed. In block copolymers, the dynamics of crystallization have features characteristic of both homopolymer crystallization and microphase separation in amorphous block copolymers. In addition, the presence of order in the melt, even if the segregation strength is weak, hinders the development of the equihbrium spacing in the block copolymer solid-state structure. [Pg.344]

Copolymers. There are two forms of copolymers, block and random. A nylon block copolymer can be made by combining two or more homopolymers in the melt, by reaction of a preformed polymer with diacid or diamine monomer by reaction of a complex molecule, eg, a bisoxazolone, with a diamine to produce a wide range of multiple amide sequences along the chain and by reaction of a diisocyanate and a dicarboxybc acid (193). In all routes, the composition of the melt is a function of temperature and more so of time. Two homopolyamides in a moisture-equiUbrated molten state undergo amide interchange where amine ends react with the amide groups. [Pg.259]

A block copolymer composed of liquid crystalline polymer (LCP) segments or that composed of segments having an LCP unit in their main chain or side chain was synthesized [67,68]. The latter showed partial compatibility and second-phase separation even when in a melt liquid crystalline state. [Pg.763]

AB diblock copolymers in the presence of a selective surface can form an adsorbed layer, which is a planar form of aggregation or self-assembly. This is very useful in the manipulation of the surface properties of solid surfaces, especially those that are employed in liquid media. Several situations have been studied both theoretically and experimentally, among them the case of a selective surface but a nonselective solvent [75] which results in swelling of both the anchor and the buoy layers. However, we concentrate on the situation most closely related to the micelle conditions just discussed, namely, adsorption from a selective solvent. Our theoretical discussion is adapted and abbreviated from that of Marques et al. [76], who considered many features not discussed here. They began their analysis from the grand canonical free energy of a block copolymer layer in equilibrium with a reservoir containing soluble block copolymer at chemical potential peK. They also considered the possible effects of micellization in solution on the adsorption process [61]. We assume in this presentation that the anchor layer is in a solvent-free, melt state above Tg. The anchor layer is assumed to be thin and smooth, with a sharp interface between it and the solvent swollen buoy layer. [Pg.50]

Microdomain stmcture is a consequence of microphase separation. It is associated with processability and performance of block copolymer as TPE, pressure sensitive adhesive, etc. The size of the domain decreases as temperature increases [184,185]. At processing temperature they are in a disordered state, melt viscosity becomes low with great advantage in processability. At service temperamre, they are in ordered state and the dispersed domain of plastic blocks acts as reinforcing filler for the matrix polymer [186]. This transition is a thermodynamic transition and is controlled by counterbalanced physical factors, e.g., energetics and entropy. [Pg.133]

The dynamic mechanical behavior indicates that the glass transition of the rubbery block is basically independent of the butadiene content. Moreover, the melting temperature of the semicrystalline HB block does not show any dependence on composition or architecture of the block copolymer. The above findings combined with the observation of the linear additivity of density and heat of fusion of the block copolymers as a function of composition support the fact that there is a good phase separation of the HI and HB amorphous phases in the solid state of these block copolymers. Future investigations will focus attention on characterizing the melt state of these systems to note if homogeneity exists above Tm. [Pg.152]

To date, the melt state linear dynamic oscillatory shear properties of various kinds of nanocomposites have been examined for a wide range of polymer matrices including Nylon 6 with various matrix molecular weights [34], polystyrene (PS) [35], PS-polyisoprene (PI) block copolymers [36,37], poly(e-caprolactone) (PCL) [38], PLA [39,40], PBS [30,41], and so on [42],... [Pg.285]


See other pages where Block copolymers melt state is mentioned: [Pg.56]    [Pg.197]    [Pg.13]    [Pg.85]    [Pg.164]    [Pg.257]    [Pg.311]    [Pg.5]    [Pg.184]    [Pg.696]    [Pg.263]    [Pg.263]    [Pg.287]    [Pg.646]    [Pg.278]    [Pg.148]    [Pg.319]    [Pg.1138]    [Pg.738]    [Pg.5494]    [Pg.295]    [Pg.467]    [Pg.80]    [Pg.227]    [Pg.399]    [Pg.7]    [Pg.8]    [Pg.266]    [Pg.149]    [Pg.482]    [Pg.97]    [Pg.47]    [Pg.127]    [Pg.128]    [Pg.116]    [Pg.173]    [Pg.200]    [Pg.38]   
See also in sourсe #XX -- [ Pg.22 ]




SEARCH



Block copolymer melts

Block copolymer melts copolymers

Melting state

© 2024 chempedia.info