Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

4,4 - -bisphenol Epoxide

Epoxy Resins. Epoxy resins (qv) or polyether resins are thermosets used as the binder for terrazzo dooring. The epoxy resin often is made from epichlorohydrin and bisphenol A. An excess of epichlorohydrin is used to assure that the intermediate product contains terminal epoxide groups. [Pg.327]

The addition—reaction product of bisphenol A [80-05-07] and glycidyl methacrylate [106-91-2] is a compromise between epoxy and methacrylate resins (245). This BSI—GMA resin polymerizes through a free-radical induced covalent bonding of methacrylate rather than the epoxide reaction of epoxy resins (246). Mineral fillers coated with a silane coupling agent, which bond the powdered inorganic fillers chemically to the resin matrix, are incorporated into BSI—GMA monomer diluted with other methacrylate monomers to make it less viscous (245). A second monomer commonly used to make composites is urethane dimethacrylate [69766-88-7]. [Pg.493]

Specialty Epoxy Resins. In addition to bisphenol, other polyols such as aUphatic glycols and novolaks are used to produce specialty resins. Epoxy resins may also include compounds based on aUphatic, cycloaUphatic, aromatic, and heterocycHc backbones. Glycidylation of active hydrogen-containing stmctures with epichlorohydrin and epoxidation of olefins with peracetic acid remain the important commercial procedures for introducing the oxirane group into various precursors of epoxy resins. [Pg.363]

The pure diglycidyl ether of bisphenol A [1675-54-3] DGEBA is a crystalline soHd (mp 43°C) with a weight per epoxide (WPE) = 170. The typical commercial unmodified Hquid resins are viscous Hquids with viscosities of 11—16 Pa-s (110—160 P) at 25°C, and an epoxy equivalent weight of ca 188. [Pg.365]

Bais resin = diglycidyl ether of bisphenol A (wtper epoxide (WPE) = 182-196). [Pg.368]

III Polyglycidyl compound of bisphenol A (abbreviated PGCBA) epoxide equivalent 0.137 kg/mol. [Pg.318]

A cement slurry additive consisting of methylcellulose, melamine-formaldehyde resin, and trioxane has been proposed for better bonding of cement to the casing string [20]. Bisphenol-A epoxide resins, with amine-based curing agents, sand filler, and a mixture of n-butanol and dimethyl benzene as a diluent, have been proposed as additives to increase adhesion properties of cement [572]. [Pg.146]

The formation of relatively ill-defined catalysts for epoxide/C02 copolymerization catalysts, arising from the treatment of ZnO with acid anhydrides or monoesters of dicarboxylic acids, has been described in a patent disclosure.968 Employing the perfluoroalkyl ester acid (342) renders the catalyst soluble in supercritical C02.969 At 110°C and 2,000 psi this catalyst mixture performs similarly to the zinc bisphenolates, producing a 96 4 ratio of polycarbonate polyether linkages, with a turnover of 440 g polymer/g [Zn] and a broad polydispersity (Mw/Mn>4). Related aluminum complexes have also been studied and (343) was found to be particularly active. However, selectivity is poor, with a ratio of 1 3.6 polycarbonate polyether.970... [Pg.56]

Selective epoxidation of one of the double bonds in dialkenes is of practical interest (Table XVI). Although monoepoxides predominate at low H2O2 concentrations, the diepoxides are also formed at higher concentrations. The diallyl epoxides of bisphenol A are major intermediates in the adhesives industry, and their synthesis in solid-catalyzed reactions in an eco-friendly manner remains a challenge. [Pg.93]

Polystyrene insulation on magnet wire 0.49 Encapsulated with phthalic anhydride cured bisphenol A-epichlorohydrin epoxide (epoxy hot melt cast). Impregnated. [Pg.158]

Epoxy resins are really polyethers but are named epoxies because of the presence of epoxide groups in the starting material. They were initially synthesized from epichlorohydrin and bisphenol A in the 1940s. General properties are listed in Table 4.9. [Pg.116]

The reaction actually involves the sodium salt of bisphenol A since polymerization is carried out in the presence of an equivalent of sodium hydroxide. Reaction temperatures are in the range 50-95°C. Side reactions (hydrolysis of epichlorohydrin, reaction of epichlorohydrin with hydroxyl groups of polymer or impurities) as well as the stoichiometric ratio need to be controlled to produce a prepolymer with two epoxide end groups. Either liquid or solid prepolymers are produced by control of molecular weight typical values of n are less than 1 for liquid prepolymers and in the range 2-30 for solid prepolymers. [Pg.128]

Epichlorohydrin is reacted with a variety of hydroxy, carboxy, and amino compounds to form monomers with two or more epoxide groups, and these monomers are then used in the reaction with bisphenol A [Lohse, 1987]. Examples are the diglycidyl derivative of cyclohex-ane-l,2-dicarboxylic acid, the triglycidyl derivatives of p-aminophenol and cyanuric acid, and the polyglycidyl derivative of phenolic prepolymers. Epoxidized diolefins are also employed (Sec. 9-8). [Pg.128]

Higher-molecular-weight products II result from coupling of epoxide I with further bisphenol ... [Pg.324]

The Tsuji-Trost-type reaction is applicable to bifunctional vinyl epoxide 144 and 1,3-diketone using a palladium catalyst as demonstrated by Koizumi, who obtained polymer 145 (Equation (67)). The reaction proceeds at 0 °C to a reflux temperature of THE. The resulting polymer 145 is isolated in a quantitative yield. The molecular weight of 145 is ca. 3000 (PDI = 2.0-2.7) when 5 mol% of Pd(PPh3)4 is employed as a catalyst. Use of Pd2(dba)3 with several bidentate phosphines such as dppe, dppp, dppb, and dppf is also effective for the polymerization reaction. Propargyl carbonate 146 also reacts with bisphenols in the presence of a palladium catalyst to afford polyethers 147 via carbon-oxygen bond formation at s - and r/) -carbon atoms (Equation (68)). [Pg.677]

Oxidative stress and covalent binding to macromolecules. Oxidation to the epoxide occurs via a tetrahedral intermediate, which can form either an epoxide or a phenol directly (see the scheme below). The epoxide can covalently bind nucleophiles, such as DNA or proteins, to open up the epoxide to a phenol and make toxic covalent adducts. The phenols can be further oxidized to bisphenols, which can in turn form quinones. Quinones can cause serious oxidative damage to cells through radical pathways, or can alkylate N- or S-nucleophiles, such as glutathione and glycine. [Pg.51]


See other pages where 4,4 - -bisphenol Epoxide is mentioned: [Pg.95]    [Pg.622]    [Pg.160]    [Pg.532]    [Pg.531]    [Pg.303]    [Pg.19]    [Pg.20]    [Pg.20]    [Pg.21]    [Pg.362]    [Pg.1021]    [Pg.673]    [Pg.117]    [Pg.277]    [Pg.277]    [Pg.333]    [Pg.173]    [Pg.188]    [Pg.109]    [Pg.109]    [Pg.318]    [Pg.188]    [Pg.105]    [Pg.182]    [Pg.186]    [Pg.91]    [Pg.88]    [Pg.491]   
See also in sourсe #XX -- [ Pg.638 ]




SEARCH



Bisphenol

Bisphenols

© 2024 chempedia.info