Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Biphasic reactions equilibria

Since the beginning of the 20th century, organic solvents have been used in enzymatic reaction media [30]. Biocatalytic reactions in water-organic biphasic media were first carried out by Cremonesi et al. [31] and by Buckland et al. [32] less than 30 years ago. Their work aimed at the conversion of high concentrations of poorly water soluble components, particularly steroids. Later, biphasic systems were used for enzyme-catalyzed synthesis reactions that were unfavored in water, changing the reaction equilibrium towards the higher yield of the product, such as esters or peptides. [Pg.555]

The volumetric ratio of the two liquid phases (j6 = Forg/ Faq) can affect the efficiency of substrate conversion in biphasic media. The biocatalyst stability and the reaction equilibrium shift are dependent on the volume ratio of the two phases [29]. In our previous work [37], we studied the importance of the nonpolar phase in a biphasic system (octane-buffer pH 9) by varying the volume of solvent. The ratio /I = 2/10 has been the most appropriate for an improvement of the yield of the two-enzyme (lipase-lipoxygenase) system. We found that a larger volume of organic phase decreases the total yield of conversion. Nevertheless, Antonini et al. [61] affirmed that changes in the ratios of phases in water-organic two-phase system have little effect upon biotransformation rate. [Pg.567]

Martinek et al. [28] defined the apparent reaction equilibrium in a biphasic system by the constant A),i. In their model, the ratio represents the equilibrium change when... [Pg.567]

The CO2 utilization option is a hot topic today and attracts the attention of several research groups all around the world. Dedicated reviews in peer reviewed journals and books make an analysis of possibilities. This book is a comprehensive and timely review of the use of PEG as solvent for C02 capture or for C02 conversion. The solvent plays a key role in the conversion of C02 as the decrease of entropy (gaseous C02 is converted into a liquid or solid) is against the reaction equilibrium which is shifted to the left. The use of good solvents for C02 or the use of supercritical C02 itself as solvent and reagent can help to push the reaction to the right. After an analysis of the phase behavior of the PEG/C02 system, the author describes the PEG/sc C02 biphasic solvent system and the role of func-tionalized-PEG as catalysts for C02 conversion. The use of PEG in the C02 capture and subsequent conversion closes the list of topics in the book. All together, the analysis of the PEG/C02 system presented by the author is complete, and very useful as it is accompanied by a quite exhaustive literature search. [Pg.84]

Another reactive separation processes studied for ethyl lactate production is the catalytic extractive reaction (Figure 20.4.7). In this case, the esterification is performed in a biphasic liquid solvent system composed by a reactive polar liquid phase which contains the esterification constituents lactic acid, eflianol and catalyst, and an extractive organic solvent selective of the ester. Therefore, ethyl lactate should preferably be dissolved in the extractive organic phase shifting, in this way, the reaction equilibrium to ester formation. The immiscible extractive solvent is an aromatic or other solvent like toluene, benzene or diethyl ether, among others. Nevertheless, it has also been used an immiscible solvent based on fatty acid methyl ester, but in this case, the procedure represents a method to produce an organic biosolvent and not just ethyl lactate as solvent. [Pg.747]

A large number of Brpnsted and Lewis acid catalysts have been employed in the Fischer indole synthesis. Only a few have been found to be sufficiently useful for general use. It is worth noting that some Fischer indolizations are unsuccessful simply due to the sensitivity of the reaction intermediates or products under acidic conditions. In many such cases the thermal indolization process may be of use if the reaction intermediates or products are thermally stable (vide infra). If the products (intermediates) are labile to either thermal or acidic conditions, the use of pyridine chloride in pyridine or biphasic conditions are employed. The general mechanism for the acid catalyzed reaction is believed to be facilitated by the equilibrium between the aryl-hydrazone 13 (R = FF or Lewis acid) and the ene-hydrazine tautomer 14, presumably stabilizing the latter intermediate 14 by either protonation or complex formation (i.e. Lewis acid) at the more basic nitrogen atom (i.e. the 2-nitrogen atom in the arylhydrazone) is important. [Pg.117]

X(A1C13) = 0.5) to immobilize a ruthenium carbene complex for biphasic ADMET polymerization of an acyclic diene ester (Figure 7.4-2). The reaction is an equilibrium processes, and so removal of ethylene drives the equilibrium towards the products. The reaction proceeds readily at ambient temperatures, producing mostly polymeric materials but also 10 % dimeric material. [Pg.329]

Several experiments using different organic solvents in different biphasic media are necessary to find the adequate distribution of the reaction components. A series of experiments are essential for the choice of a process and for scaling-up. Experiments using Lewis cells [44] may yield useful results for understanding equilibrium, kinetics, and interactions between organic solvent-substrate and/or organic solvent-biocatalyst. A study of two-liquid phase biotransformation systems is detailed below in Sections II-IX. [Pg.556]

The present section deals with the improvement in the performance of biocatalysis when carried out in organic-aqueous biphasic systems. Such systems are very useful in equilibrium reactions and conversion yield where substrates and products can be dissolved and drawn into different phases. Subsequently the synthesis in the reactive aqueous phase is allowed to continue. [Pg.575]

In a biphasic system, the same rules as above apply, however, the rate of the reaction and the position of the equilibrium are determined by the concentration of the reactants and products in the phase where the reaction takes place, rather than their overall concentration in the system. Exactly where the reaction actually takes place is still a matter of debate, with two locations proposed, specifically, at the interfacial layer between the two phases (model 1) and in the bulk of the catalyst-containing phase (model 2), as shown in Figure 2.9. [Pg.47]

As for the rate of diffusion, the equilibrium constant for a reaction in a biphasic system is not determined by the overall concentration of each reagent, but by their concentrations in the reaction phase. In some cases this can drive the forward reaction to completion, and in other cases it can be inhibitory, depending on the relative concentrations of the reactants and products. In model 1, where the reaction takes place at the phase boundary, the effective concentration of the reactants and products will be that in phase 1, and assuming each has an equivalent solubility, the equilibrium position will approach that of a homogeneous system. Where the reaction takes place in the bulk solvent, as in model 2, the equilibrium position is very much dependent on the solubility of the reagents in phase 2. For example, if the product is less soluble in phase 2 than the reactant, as the product is formed it will diffuse back into phase 1, reducing its concentration in phase 2 where the reaction is occurring and therefore the reaction will... [Pg.51]

To understand the pharmacokinetic relevance of the proxibarbal-valofan equilibrium, the kinetics and thermodynamics of the reaction were carefully examined in aqueous and biphasic media. The various pseudo-first-order rate constants shown in Fig. 11.19 were determined in the pH range of 6.7 - 8.0... [Pg.740]


See other pages where Biphasic reactions equilibria is mentioned: [Pg.568]    [Pg.88]    [Pg.1007]    [Pg.576]    [Pg.169]    [Pg.141]    [Pg.338]    [Pg.218]    [Pg.1053]    [Pg.501]    [Pg.1053]    [Pg.567]    [Pg.363]    [Pg.576]    [Pg.581]    [Pg.583]    [Pg.141]    [Pg.28]    [Pg.229]    [Pg.73]    [Pg.375]    [Pg.1003]    [Pg.46]    [Pg.480]    [Pg.148]    [Pg.449]    [Pg.579]    [Pg.256]    [Pg.342]    [Pg.334]    [Pg.63]    [Pg.8]   
See also in sourсe #XX -- [ Pg.576 , Pg.577 , Pg.578 , Pg.579 , Pg.580 , Pg.581 , Pg.582 , Pg.583 , Pg.584 ]




SEARCH



Biphase

Biphasic

Biphasic reaction

© 2024 chempedia.info