Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Biotransformation metabolic conversions

Oxidative reactions at carbon predominate in the biotransformation of cyclic amiiies, and an important consequence of this is often the cleavage of the carbon-nitrogen bond. For example, A-dealkylation of N- alkyl substituted pyrrolidine (or piperidine, morpholine, etc.) involves an initial oxidative attack at the a- alkyl carbon atom to yield an N hydroxyalkyl derivative (carbinolamine), which is then metabolized to a secondary amine and the corresponding aldehyde. The metabolic conversion of nicotine to nornicotine (30 see Scheme 3) probably involves this mechanism, although the iminium ion (31) has also been suggested as an intermediate in the biotransformation (76JMC1168). Carbinolamines are unstable intermediates and have been identified only in a few cases, e.g. A-hydroxymethylcarbazole... [Pg.230]

Hydrolysis is a major biotransformation pathway for drugs containing an ester functionality. This is because of the relative case of hydrolyzing the ester linkage. A classic example of ester hydrolysis is the metabolic conversion of aspirin (acetylsalicylic acid) to salicylic acid. " Of the two aslcr moieties present in cocaine, it appears that, in general, the methyl group is hydrolyzed preferentially to yield ben-roylecgoninc os the major human urinary metabolite. The... [Pg.109]

Subsequent to the entry of an environmental chemical into a mammalian organism, chemical reactions occur within the body to alter the structure of the chemical. This metabolic conversion process is known as biotransformation and occurs in any of several tissues and organs such as the intestine, lung, kidney, skin, and liver. [Pg.235]

The general principle of biotransformation is the metabolic conversion of drug molecules to more water-soluble metabolites that are more readily excreted. [Pg.9]

Biotransformation is the metabolic conversion of drugs, generally to less active compounds but sometimes to iso-active or more active forms. Phase I biotransformation occurs via oxidation, reduction, or hydrolysis. Phase II metabolism occurs via conjugation. [Pg.18]

Reductive biotransformations of several compounds such as polyhalogenated, keto, nitro and azo derivatives, are catalysed by a variety of enzymes which differ according to the substrates and the species. The liver cytochrome P-450-dependent drug metabolizing system is capable of reducing Af-oxide, nitro and azo bonds, whereas the cytosolic nitrobenzene reductase activity is mainly due to cytochrome P-450 reductase, which transforms nitrobenzene into its hydroxylamino derivative. NADPH cytochrome c reductase is also able to catalyse the reduction of nitro compounds. These metabolic conversions may also be brought about by gastrointestinal anaerobic bacteria. [Pg.549]

Baldwin NCP, Bycroft BW, Dewick PM, Gilbert J (1986) Metabolic Conversions of Trichothecene Mycotoxins Biotransformation of 3-Acetyldeoxynivalenol into Fusarenone X. Z Naturforsch 41C 845... [Pg.129]

Metabolic pathways containing dioxygenases in wild-type strains are usually related to detoxification processes upon conversion of aromatic xenobiotics to phenols and catechols, which are more readily excreted. Within such pathways, the intermediate chiral cis-diol is rearomatized by a dihydrodiol-dehydrogenase. While this mild route to catechols is also exploited synthetically [221], the chirality is lost. In the context of asymmetric synthesis, such further biotransformations have to be prevented, which was initially realized by using mutant strains deficient in enzymes responsible for the rearomatization. Today, several dioxygenases with complementary substrate profiles are available, as outlined in Table 9.6. Considering the delicate architecture of these enzyme complexes, recombinant whole-cell-mediated biotransformations are the only option for such conversions. E. coli is preferably used as host and fermentation protocols have been optimized [222,223]. [Pg.257]

The oxidation of OPs can bring detoxication as well as activation. Oxidative attack can lead to the removal of R groups (oxidative dealkylation), leaving behind P-OH, which ionizes to PO . Such a conversion looks superficially like a hydrolysis, and was sometimes confused with it before the great diversity of P450-catalyzed biotransformations became known. Oxidative deethylation yields polar ionizable metabolites and generally causes detoxication (Eto 1974 Batten and Hutson 1995). Oxidative demethy-lation (0-demethylation) has been demonstrated during the metabolism of malathion. [Pg.197]

As mentioned in the introductory part, stereochemical course of the conversion of isocitric acid to a-ketoglutaric acid in TCA cycle is completely enantiose-lective although the reaction does not form an asymmetric carbon in the usual metabolic path. If such type of oxidative decarboxylation can be applied to synthetic compounds, it is expected that an entirely new type of asymmetric biotransformation will be developed. [Pg.333]

The liver is also the principal metabolic center for hydrophobic amino acids, and hence changes in plasma concentrations or metabolism of these molecules is a good measure of the functional capacity of the liver. Two of the commonly used aromatic amino acids are phenylalanine and tyrosine, which are primarily metabolized by cytosolic enzymes in the liver [1,114-117]. Hydroxylation of phenylalanine to tyrosine by phenylalanine hydroxylase is very efficient by the liver first pass effect. In normal functioning liver, conversion of tyrosine to 4-hy-droxyphenylpyruvate by tyrosine transaminase and subsequent biotransformation to homogentisic acidby 4-hydroxyphenylpyruvic acid dioxygenase liberates CO2 from the C-1 position of the parent amino acid (Fig. 5) [1,118]. Thus, the C-1 position of phenylalanine or tyrosine is typically labeled with and the expired C02 is proportional to the metabolic activity of liver cytosolic enzymes, which corresponds to functional hepatic reserve. Oral or intravenous administration of the amino acids is possible [115]. This method is amenable to the continuous hepatic function measurement approach by monitoring changes in the spectral properties of tyrosine pre- and post-administration of the marker. [Pg.43]

The majority of compounds that enter the organism require metabolism in order to be excreted. If the parent compound is responsible for the toxicity and its metabolites are less toxic, an increased biotransformation rate will reduce the toxicity, and conversely. However, if the chemical s toxicity is mainly due to its metabolite, stimulating the biotransformation will enhance the toxicity. [Pg.390]

The methyl transferases (MTs) catalyze the methyl conjugation of a number of small molecules, such as drugs, hormones, and neurotransmitters, but they are also responsible for the methylation of such macromolecules as proteins, RNA, and DNA. A representative reaction of this type is shown in Figure 4.1. Most of the MTs use S-adenosyl-L-methionine (SAM) as the methyl donor, and this compound is now being used as a dietary supplement for the treatment of various conditions. Methylations typically occur at oxygen, nitrogen, or sulfur atoms on a molecule. For example, catechol-O-methyltransferase (COMT) is responsible for the biotransformation of catecholamine neurotransmitters such as dopamine and norepinephrine. A-methylation is a well established pathway for the metabolism of neurotransmitters, such as conversion of norepinephrine to epinephrine and methylation of nicotinamide and histamine. Possibly the most clinically relevant example of MT activity involves 5-methylation by the enzyme thiopurine me thy Itransf erase (TPMT). Patients who are low or lacking in TPMT (i.e., are polymorphic) are at... [Pg.38]


See other pages where Biotransformation metabolic conversions is mentioned: [Pg.104]    [Pg.228]    [Pg.74]    [Pg.90]    [Pg.16]    [Pg.406]    [Pg.106]    [Pg.409]    [Pg.1924]    [Pg.1022]    [Pg.1792]    [Pg.239]    [Pg.85]    [Pg.675]    [Pg.675]    [Pg.17]    [Pg.25]    [Pg.545]    [Pg.69]    [Pg.25]    [Pg.675]    [Pg.675]    [Pg.3]    [Pg.37]    [Pg.193]    [Pg.415]    [Pg.112]    [Pg.237]    [Pg.576]    [Pg.228]    [Pg.40]    [Pg.339]    [Pg.175]    [Pg.90]    [Pg.148]   


SEARCH



Metabolic biotransformations

Metabolic conversion

© 2024 chempedia.info