Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Biosensors selectivity

Electrochemical biosensors based on detection of hydrogen peroxide at platinized electrodes were found to be more versatile allowing a decrease in detection limit down to 1 i,mol L 1 [109]. However, all biological liquids contain a variety of electrochemically easily oxidizable reductants, e.g. ascorbate, urate, bilirubin, catecholamines, etc., which are oxidized at similar potentials and dramatically affect biosensor selectivity producing parasitic anodic current [110]. [Pg.442]

Biopolymers as Biosensors. Selectivity is an important consideration in analytical chemistry. Biologically derived polymers can be used as highly selective immobilized reagents in analytical applications. [Pg.204]

A transducer converts the biochemical signal to an electronic signal. The biochemical transducer or biocomponent gives the biosensor selectivity or specificity. The transducer of an electrical device responds in such a way that a signal can be electronically amplified and displayed. The physical transducers vary from electrochemical, spectroscopic, thermal, piezoelectric and surface acoustic wave technology [24, 25]. The most common electrochemical transducers being utilised are based on amperometric and potentiometric techniques [26-28]. [Pg.301]

Several enzymes can be immobilized within the same reaction layer, in order to increase the range of possible biosensor analytes, provide efficient regeneration of enzyme cosubstrates, or to improve the biosensor selectivity by decreasing the local concentration of electrochemical interfering substances. [Pg.2362]

Potcntiomctric Biosensors Potentiometric electrodes for the analysis of molecules of biochemical importance can be constructed in a fashion similar to that used for gas-sensing electrodes. The most common class of potentiometric biosensors are the so-called enzyme electrodes, in which an enzyme is trapped or immobilized at the surface of an ion-selective electrode. Reaction of the analyte with the enzyme produces a product whose concentration is monitored by the ion-selective electrode. Potentiometric biosensors have also been designed around other biologically active species, including antibodies, bacterial particles, tissue, and hormone receptors. [Pg.484]

Few potentiometric biosensors are commercially available. As shown in Figures 11.16 and 11.17, however, available ion-selective and gas-sensing electrodes may be easily converted into biosensors. Several representative examples are described in Table 11.5, and additional examples can be found in several reviews listed in the suggested readings at the end of the chapter. [Pg.485]

Environmental Applications Although ion-selective electrodes find use in environmental analysis, their application is not as widespread as in clinical analysis. Standard methods have been developed for the analysis of CN , F , NH3, and in water and wastewater. Except for F , however, other analytical methods are considered superior. By incorporating the ion-selective electrode into a flow cell, the continuous monitoring of wastewater streams and other flow systems is possible. Such applications are limited, however, by the electrode s response to the analyte s activity, rather than its concentration. Considerable interest has been shown in the development of biosensors for the field screening and monitoring of environmental samples for a number of priority pollutants. [Pg.494]

The following set of suggested experiments describes the preparation of solid-state and liquid ion-exchange ion-selective electrodes, as well as potentiometric biosensors. [Pg.533]

In Vivo Biosensing. In vivo biosensing involves the use of a sensitive probe to make chemical and physical measurements in living, functioning systems (60—62). Thus it is no longer necessary to decapitate an animal in order to study its brain. Rather, an electrochemical biosensor is employed to monitor interceUular or intraceUular events. These probes must be small, fast, sensitive, selective, stable, mgged, and have a linear response. [Pg.396]

Individual polyethers exhibit varying specificities for cations. Some polyethers have found appHcation as components in ion-selective electrodes for use in clinical medicine or in laboratory studies involving transport studies or measurement of transmembrane electrical potential (4). The methyl ester of monensin [28636-21 -7] i2ls been incorporated into a membrane sHde assembly used for the assay of semm sodium (see Biosensors) (5). Studies directed toward the design of a lithium selective electrode resulted in the synthesis of a derivative of monensin lactone that is highly specific for lithium (6). [Pg.166]

Selectivity is an important consideration in analytical chemistry. Biologically derived polymers can be used as highly selective immobilized reagents in analytical appHcations. The first reported use of immobilized biopolymers as biosensors (qv) for the detection of an analyte was made in 1962 (48). Since that first reported use there has been a great deal of development and appHcation of immobilized biopolymers in analytical chemistry. [Pg.102]

Fig. 4. Schematic of a multisequence biosensor in which the target glucose is first converted to glucose-6-phosphate, G6P, in the test solution by hexokinase. G6P then reacts selectively with glucose-6-phosphate dehydrogenase immobilized on the quartz crystal surface. Electrons released in the reaction then chemically reduce the Pmssian blue film (see Fig. 3), forcing an uptake of potassium ions. The resulting mass increase is manifested as a... Fig. 4. Schematic of a multisequence biosensor in which the target glucose is first converted to glucose-6-phosphate, G6P, in the test solution by hexokinase. G6P then reacts selectively with glucose-6-phosphate dehydrogenase immobilized on the quartz crystal surface. Electrons released in the reaction then chemically reduce the Pmssian blue film (see Fig. 3), forcing an uptake of potassium ions. The resulting mass increase is manifested as a...
Electrodes may also be rendered selective to more complex analytes using enzyme or other overcoats (see Biopolymers, analytical techniques Biosensors). The enzyme converts the analyte into a detectable ion or gas. Glucose and blood urea nitrogen sensors can be made in this way. [Pg.56]

Biosensors ai e widely used to the detection of hazardous contaminants in foodstuffs, soil and fresh waters. Due to high sensitivity, simple design, low cost and real-time measurement mode biosensors ai e considered as an alternative to conventional analytical techniques, e.g. GC or HPLC. Although the sensitivity and selectivity of contaminant detection is mainly determined by a biological component, i.e. enzyme or antibodies, the biosensor performance can be efficiently controlled by the optimization of its assembly and working conditions. In this report, the prospects to the improvement of pesticide detection with cholinesterase sensors based on modified screen-printed electrodes are summarized. The following opportunities for the controlled improvement of analytical characteristics of anticholinesterase pesticides ai e discussed ... [Pg.295]

Scanning electrochemical microscopy can also be applied to study localized biological activity, as desired, for example, for in-situ characterization of biosensors (59,60). In this mode, the tip is used to probe the biological generation or consumption of electroactive species, for example, the product of an enzymatic surface reaction. The utility of potentiometric (pH-selective) tips has also been... [Pg.50]

Sequence-specific biosensor, 183, 185 Selectivity, 92, 143, 147, 155 Selectivity coefficient, 143 Self-assembled monolayers, 39, 118 Selenium, 85 Sensor, 171 Silver halide, 159 Simulation, 35... [Pg.209]

Attention has been given to the synthesis of bimetallic silver-gold clusters [71] due to their effective catalytic properties, resistance to poisoning, and selectivity [72]. Recently molecular materials with gold and silver nanoclusters and nanowires have been synthesized. These materials are considered to be good candidates for electronic nanodevices and biosensors [73]. [Pg.33]


See other pages where Biosensors selectivity is mentioned: [Pg.3]    [Pg.70]    [Pg.155]    [Pg.411]    [Pg.164]    [Pg.3]    [Pg.70]    [Pg.155]    [Pg.411]    [Pg.164]    [Pg.536]    [Pg.103]    [Pg.106]    [Pg.106]    [Pg.106]    [Pg.108]    [Pg.109]    [Pg.109]    [Pg.110]    [Pg.18]    [Pg.347]    [Pg.79]    [Pg.121]    [Pg.185]    [Pg.192]    [Pg.218]    [Pg.769]    [Pg.57]    [Pg.168]    [Pg.380]    [Pg.381]    [Pg.383]    [Pg.420]    [Pg.244]    [Pg.456]   
See also in sourсe #XX -- [ Pg.231 ]

See also in sourсe #XX -- [ Pg.301 ]




SEARCH



Selective Electrodes and Biosensors

Selectivity biosensor

© 2024 chempedia.info