Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Biosensor detection limit

Analyte Biosensor Detection Limit Upper Linear Range Sensitivity Operating Potential (and Mode) Ref. [Pg.58]

The low detection limit, high sensitivity, and fast response times of chemoreceptor-based biosensors result primarily from the extremely high binding constants of the receptor R for the target substrate S. The receptor—substrate binding may be described... [Pg.107]

The dye is excited by light suppHed through the optical fiber (see Fiber optics), and its fluorescence monitored, also via the optical fiber. Because molecular oxygen, O2, quenches the fluorescence of the dyes employed, the iatensity of the fluorescence is related to the concentration of O2 at the surface of the optical fiber. Any glucose present ia the test solution reduces the local O2 concentration because of the immobilized enzyme resulting ia an iacrease ia fluorescence iatensity. This biosensor has a detection limit for glucose of approximately 100 ]lM , response times are on the order of a miaute. [Pg.110]

PSS-SG composite film was tested for sorption of heme proteins hemoglobin (Hb) and myoglobin (Mb). The peroxidaze activity of adsorbed proteins were studied and evaluated by optical and voltammetric methods. Mb-PSS-SG film on PG electrode was shown to be perspective for detection of dissolved oxygen and hydrogen peroxide by voltammetry with linear calibration in the range 2-30 p.M, and detection limit -1.5 p.M. Obtained composite films can be modified by different types of biological active compounds which is important for the development of sensitive elements of biosensors. [Pg.306]

L-arginine and the excellent selectivity of the ammonia electrode for NH3. The working range of biosensors of this type is typically only two to three orders of magnitude with a detection limit of 10 to 10 M. [Pg.10]

Detection of damage caused to DNA by niclosamide in schistosomiasis was investigated using an electrochemical DNA-biosensor. It showed for the first time clear evidence of interaction of niclosamide with DNA and suggested that niclosamide toxicity can be caused by this interaction, after reductive activation. The electrochemical reduction and oxidation of niclosamide involved the use of cyclic, differential, and square-wave voltammetry, at a glassy carbon electrode. It enabled the detection limit of 8 x 10-7 M [34]. [Pg.83]

A flow injection optical fibre biosensor for choline was also developed55. Choline oxidase (ChOX) was immobilized by physical entrapment in a photo-cross-linkable poly(vinyl alcohol) polymer (PVA-SbQ) after adsorption on weak anion-exchanger beads (DEAE-Sepharose). In this way, the sensing layer was directly created at the surface of the working glassy carbon electrode. The optimization of the reaction conditions and of the physicochemical parameters influencing the FIA biosensor response allows the measurement of choline concentration with a detection limit of 10 pmol. The DEAE-based system also exhibited a good operational stability since 160 repeated measurements of 3 nmol of choline could be performed with a variation coefficient of 4.5%. [Pg.171]

Direct detection is usually preferred in applications, where direct binding of analyte of concentrations of interest produces a sufficient response. If necessary, the lowest detection limits of the direct biosensors can be improved by using a sandwich assay. Smaller analytes (molecular weight < 10,000) are usually measured using inhibition assay, Figure 14. [Pg.189]

MWNTs favored the detection of insecticide from 1.5 to 80 nM with a detection limit of InM at an inhibition of 10% (Fig. 2.7). Bucur et al. [58] employed two kinds of AChE, wild type Drosophila melanogaster and a mutant E69W, for the pesticide detection using flow injection analysis. Mutant AChE showed lower detection limit (1 X 10-7 M) than the wild type (1 X 10 6 M) for omethoate. An amperometric FIA biosensor was reported by immobilizing OPH on aminopropyl control pore glass beads [27], The amperometric response of the biosensor was linear up to 120 and 140 pM for paraoxon and methyl-parathion, respectively, with a detection limit of 20 nM (for both the pesticides). Neufeld et al. [59] reported a sensitive, rapid, small, and inexpensive amperometric microflow injection electrochemical biosensor for the identification and quantification of dimethyl 2,2 -dichlorovinyl phosphate (DDVP) on the spot. The electrochemical cell was made up of a screen-printed electrode covered with an enzymatic membrane and combined with a flow cell and computer-controlled potentiostat. Potassium hexacyanoferrate (III) was used as mediator to generate very sharp, rapid, and reproducible electric signals. Other reports on pesticide biosensors could be found in review [17],... [Pg.62]

Electrochemical biosensors based on detection of hydrogen peroxide at platinized electrodes were found to be more versatile allowing a decrease in detection limit down to 1 i,mol L 1 [109]. However, all biological liquids contain a variety of electrochemically easily oxidizable reductants, e.g. ascorbate, urate, bilirubin, catecholamines, etc., which are oxidized at similar potentials and dramatically affect biosensor selectivity producing parasitic anodic current [110]. [Pg.442]

Combined with the attractive performance of a Prussian blue-based hydrogen peroxide transducer, the proposed immobilization protocol provides elaboration of the most advantageous first-generation glucose biosensor concerning its sensitivity and detection limit. [Pg.453]

CNTs offer an exciting possibility for developing ultrasensitive electrochemical biosensors because of their unique electrical properties and biocompatible nanostructures. Luong et al. have fabricated a glucose biosensor based on the immobilization of GOx on CNTs solubilized in 3-aminopropyltriethoxysilane (APTES). The as-prepared CNT-based biosensor using a carbon fiber has achieved a picoamperometric response current with the response time of less than 5 s and a detection limit of 5-10 pM [109], When Nation is used to solubilize CNTs and combine with platinum nanoparticles, it displays strong interactions with Pt nanoparticles to form a network that connects Pt nanoparticles to the electrode surface. The Pt-CNT nanohybrid-based glucose biosensor... [Pg.502]


See other pages where Biosensor detection limit is mentioned: [Pg.110]    [Pg.106]    [Pg.110]    [Pg.211]    [Pg.161]    [Pg.110]    [Pg.106]    [Pg.110]    [Pg.211]    [Pg.161]    [Pg.106]    [Pg.107]    [Pg.109]    [Pg.110]    [Pg.111]    [Pg.170]    [Pg.190]    [Pg.333]    [Pg.379]    [Pg.445]    [Pg.282]    [Pg.59]    [Pg.59]    [Pg.60]    [Pg.61]    [Pg.61]    [Pg.65]    [Pg.66]    [Pg.68]    [Pg.69]    [Pg.71]    [Pg.72]    [Pg.157]    [Pg.158]    [Pg.172]    [Pg.186]    [Pg.192]    [Pg.197]    [Pg.200]    [Pg.270]    [Pg.371]    [Pg.449]    [Pg.503]    [Pg.534]   
See also in sourсe #XX -- [ Pg.61 , Pg.62 , Pg.63 ]




SEARCH



Biosensors detection

Biosensors detection limit

Detectable limit

Detection limits

Detection limits, limitations

Detection-limiting

© 2024 chempedia.info