Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Biomimetics section

The tetramerization of suitable monopyrroles is one of the simplest and most effective approaches to prepare porphyrins (see Section 1.1.1.1.). This approach, which is best carried out with a-(hydroxymethyl)- or ot-(aminomethyl)pyrroles, can be designated as a biomimetic synthesis because nature also uses the x-(aminomethyl)pyrrole porphobilinogen to produce uroporphyrinogen III. the key intermediate in the biosynthesis of all kinds of naturally occurring porphyrins, hydroporphyrins and corrins. The only restriction of this tetramerization method is the fact that tnonopyrroles with different -substituents form a mixture of four constitutionally isomeric porphyrins named as porphyrins I, II, III, and IV. In the porphyrin biosynthesis starting from porphobilinogen, which has an acetic acid and a propionic acid side chain in the y6-positions, this tetramerization is enzymatically controlled so that only the type III constitutional isomer is formed. [Pg.697]

NEW Bio-based and biomimetic materials their properties and uses (Section 8.22)... [Pg.17]

Most important for many applications of S-layer lattices in molecular nanotechnology, biotechnology, and biomimetics was the observation that S-layer proteins are capable of reassembling into large coherent monolayers on solid supports (e.g., silicon wafers, polymers, metals) at the air/water interface and on Langmuir lipid films (Fig. 6) (see Sections V and VIII). [Pg.343]

In this context it is interesting to note that archaea, which possess S-layers as exclusive cell wall components outside the cytoplasmic membrane (Fig. 14), exist under extreme environmental conditions (e.g., high temperatures, hydrostatic pressure, and salt concentrations, low pH values). Thus, it is obvious one should study the effect of proteinaceous S-layer lattices on the fluidity, integrity, structure, and stability of lipid membranes. This section focuses on the generation and characterization of composite structures that mimic the supramolecular assembly of archaeal cell envelope structures composed of a cytoplasmic membrane and a closely associated S-layer. In this biomimetic structure, either a tetraether... [Pg.362]

In order to enhance the stability of hposomes and to provide a biocompatible outermost surface shucture for controlled immobihzation (see Section IV), isolated monomeric and oligomeric S-layer protein from B. coagulans E38/vl [118,123,143], B. sphaericus CCM 2177, and the SbsB from B. stearothermophilus PV72/p2 [119] have been crystallized into the respective lattice type on positively charged liposomes composed of DPPC, HD A, and cholesterol. Such S-layer-coated hposomes are spherical biomimetic structures (Fig. 18) that resemble archaeal ceUs (Fig. 14) or virus envelopes. The crystallization of S-... [Pg.372]

Biomimetic chemistry of nickel was extensively reviewed.1847,1848 Elaborate complexes have been developed in order to model structural and spectroscopic properties as well as the catalytic function of the biological sites. Biomimetic systems for urease are described in Section 6.3.4.12.7, and model systems for [Ni,Fe]-hydrogenases are collected in Section 6.3.4.12.5. [Pg.421]

However, it has to be realized that biological templates remain inserted in the final nanoparticles and this is not acceptable for many applications. Nevertheless, some recent examples indicate that such biomimetic materials may be suitable for the design of biotechnological and medical devices [32]. For instance, it was shown that silica gels formed in the presence of p-R5 were excellent host matrices for enzyme encapsulation [33]. In parallel, biopolymer/silica hybrid macro-, micro- and nanocapsules were recently obtained via biomimetic routes and these exhibit promising properties for the design of drug delivery materials (see Section 3.1.1) [34,35],... [Pg.163]

The diversity of the substrates, catalysts, and reducing methods made it difficult to organize the material of this chapter. Thus, we have chosen an arrangement related to that used by Kaesz and Saillant [3] in their review on transition-metal hydrides - that is, we have classified the subject according to the applied reducing agents. Additional sections were devoted to the newer biomimetic and electrochemical reductions. Special attention was paid mainly to those methods which are of preparative value. Stoichiometric hydrogenations and model reactions will be discussed only in connection with the mechanisms. [Pg.516]

An impressive example of a multi-step biomi-metic domino process is the synthesis of codaphni-phyllin by Heathcock et al. (see scheme 14). Another example is the highly efficient biomimetic synthesis of (+)-hirsutine by my group (see scheme 13). In addition several other total syntheses of natural products have been developed using domino processes these are described in the different sections of this chapter. [Pg.41]

The synthesis of bicyclic molecules containing guanidinium subunits, such as 156 (Scheme 22), are of considerable interest due to the wide range of biological activities presented by this family of natural products (see Section 11.11.9). In one of the first biomimetic studies toward ptylomycalin A, a series of polycyclic compounds have been prepared through an intermediate l-imino-hexahydropyrrolo[l,2-f]pyrimidin-3(4//)-one such as 155. Succinaldehyde... [Pg.516]

Conceptually, SPMD data fills a gap between exposure assessments based on direct analytical measurement of total residues in water and air, and the analysis of residues present in biomonitoring organisms. SPMDs provide a biomimetic approach (i.e., processes in simple media that mimic more complex biological processes) for determining ambient HOC concentrations, sources, and gradients. Residues accumulated in SPMDs are representative of their environmental bioavailability (see Section 1.1.) in water and air and the encounter-volume rate as defined by Landrum et al. (1994) is expected to be proportional to the uptake rate. SPMD-based estimates of water concentrations can be readily compared to aquatic toxicity data (generally based on dissolved phase concentrations) and SPMD extracts can be used to screen for toxic concentrations of HOCs using bioassays or biomarker tests. [Pg.32]

In addition to the three basic FF designs mentioned, various new FF channel concepts (e.g., biomimetic or fractal flow fields, improved mass transfer channels with variable channel cross section, etc.) have been proposed recently [275]. In all cases, the DL requirements and design will depend on the type of FF design. Therefore, it is critical to understand the relationship between any flow field design and the corresponding DL. [Pg.286]

As discussed in the first section of this chapter, interest in dendrimers has increased rapidly since the successful synthesis of the first cascade molecules two decades ago. Much of this interest has been driven by the expectation that dendrimers will exhibit unique properties [2-5, 60]. Because dendrimers in many cases interact strongly with metal ions, it seems reasonable to expect that such composite materials might provide additional heretofore unknown or biomimetic functions. This is particularly true in hght of the high number of metal ions that can be complexed to a single dendrimer and (in some cases) their well-defined position in the dendrimer. For example, there has been much recent speculation that these materials will be useful for catalysis [3, 4, 53,... [Pg.90]

Three key issues must be addressed in the development of effective biomimetic solar energy conversion systems. First, the molecular system should possess a large optical absorption cross-section in the desired spectral region. Second, the system should possess appropriate characteristics to insure formation of a sufficiently long-lived, low-lying state which can initiate the primary ET efficiently. And third, the system should be able to effect the ET process irreversibility, that is electron-hole recombination should be substantially inhibited. [Pg.44]

The first issue can be addressed in two ways a primary ET species which has a large optical absorption cross-section can be chosen or arrays of molecules with large optical absorption cross-sections can be used as "antennas" that will efficiently collect and transport the electronic excitation energy to the primary ET species, in direct analogy to photosynthetic systems. While in the latter case it should be possible to develop systems with more efficient solar photon collection, the number of primary ET species will have to be reduced due to the spatial limitations, which will also reduce the potential electric current that can be produced by the system. Thus, questions related to the detailed molecular architecture of biomimetic solar energy conversion devices will have to address this issue, and it is quite likely that a number of compromises will have to be made before optimal design characteristics are obtained. [Pg.44]

Biomimetic analogs can therefore distinguish between related uptake systems in different microorganisms. A similar trend was described previously with biomimetic fer-richrome analogs (see Section V.B.2.)... [Pg.789]

Directed self-assembly processes are those which involve a template, whether or not it ends up in the final structure. Typical examples are vesicle-directed biomimetic mineralisation strategies (Section 15.3)... [Pg.629]


See other pages where Biomimetics section is mentioned: [Pg.358]    [Pg.94]    [Pg.655]    [Pg.659]    [Pg.400]    [Pg.184]    [Pg.61]    [Pg.73]    [Pg.767]    [Pg.9]    [Pg.913]    [Pg.101]    [Pg.1018]    [Pg.22]    [Pg.372]    [Pg.765]    [Pg.769]    [Pg.782]    [Pg.790]    [Pg.240]    [Pg.216]    [Pg.114]    [Pg.8]    [Pg.251]    [Pg.322]    [Pg.30]    [Pg.135]    [Pg.215]    [Pg.39]    [Pg.293]    [Pg.281]    [Pg.402]    [Pg.627]    [Pg.89]   
See also in sourсe #XX -- [ Pg.320 ]

See also in sourсe #XX -- [ Pg.320 ]




SEARCH



© 2024 chempedia.info