Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Biomass properties example

An assessment of the rates and duration of phenolic acid production from a residue is an important first step. Laboratory and field studies for assessing the dynamics of phenolic acid production must include considerations of the nature of the residue, soil properties, nutrient status of the system, microbial biomass interrelationships, temperature, moisture, residue placement in or on the soil, and other factors that relate to the field. Soil properties in the field are especially important when organic residues are incorporated. When soils are wet, such as those with more than -0.02 MPa water potential, oxygen diffusion is impeded and anaerobic conditions prevail, especially in soils that are high in clay content. Under these circumstances, microbial byproducts change dramatically and one result, for example, is an increase in the production of phenolic acids. Phenolic acid production is also affected by temperature (22) and soil fertility status (23). While the C H ratio of an organic residue may influence the rate of its decomposition and, hence, the rate of phenolic acid production, the... [Pg.506]

Since late 2007, the Energy Biosciences Institute in Berkeley has been the center for cooperation between scientists from the University of California and the Agricultural Department of the University of Illinois for the production of fuels from so-called energy crops like switch grass. In this second-generation biofuel project that is financed over a 10-year period with 500 million by oil company BP, biomass is converted with the help of synthetic catalysts, for example, organometallic compounds, in a special solvent medium, better known as ionic liquids, into hydrocarbons with properties close to automotive fuels. [Pg.288]

Corn stover, a well-known example of lignocellulosic biomass, is a potential renewable feed for bioethanol production. Dilute sulfuric acid pretreatment removes hemicellulose and makes the cellulose more susceptible to bacterial digestion. The rheologic properties of corn stover pretreated in such a manner were studied. The Power Law parameters were sensitive to corn stover suspension concentration becoming more non-Newtonian with slope n, ranging from 0.92 to 0.05 between 5 and 30% solids. The Casson and the Power Law models described the experimental data with correlation coefficients ranging from 0.90 to 0.99 and 0.85 to 0.99, respectively. The yield stress predicted by direct data extrapolation and by the Herschel-Bulkley model was similar for each concentration of corn stover tested. [Pg.347]

Although ASPEN-Plus is widely used to simulate petrochemical processes, its uses for modeling biomass processes are limited owing to the limited availability of physical properties that best describe biomass components such as cellulose, xylan, and lignin. For example, Lynd et al. (1) used conventional methods to calculate the economic viability of a biom-ass-to-ethanol process. However, with the development by the National Renewable Energy Laboratory (NREL) of an ASPEN-Plus physical property database for biofuels components, modified versions of ASPEN-Plus software can now be used to model biomass processes (2). Wooley et al. (3) used ASPEN-Plus simulation software to calculate equipment and energy costs for an entire biomass-to-ethanol process that made use of dilute-H2S04 acid pretreatment. [Pg.1088]

A major issue for biomass as a raw material for industrial product manufacture is variability. Questions of standardisation and specifications will therefore need to be addressed as new biofuels, biomaterials and bioproducts are introduced onto the market. Another major challenge associated with the use of biomass is yield. One approach to improve/modify the properties and/or yield of biomass is to use selective breeding and genetic engineering to develop plant strains that produce greater amounts of desirable feedstocks, chemicals or even compounds that the plant does not naturally produce (Fernando et al., 2006). This essentially transfers part of the biorefining to the plant (see Chapter 2 for some example of oils with modified fatty acid content). [Pg.17]


See other pages where Biomass properties example is mentioned: [Pg.59]    [Pg.77]    [Pg.1820]    [Pg.640]    [Pg.412]    [Pg.450]    [Pg.168]    [Pg.172]    [Pg.263]    [Pg.845]    [Pg.265]    [Pg.327]    [Pg.192]    [Pg.168]    [Pg.62]    [Pg.25]    [Pg.329]    [Pg.201]    [Pg.58]    [Pg.76]    [Pg.245]    [Pg.12]    [Pg.195]    [Pg.226]    [Pg.43]    [Pg.401]    [Pg.72]    [Pg.74]    [Pg.66]    [Pg.94]    [Pg.16]    [Pg.56]    [Pg.53]    [Pg.649]    [Pg.460]    [Pg.113]    [Pg.68]    [Pg.1465]    [Pg.1499]    [Pg.82]    [Pg.111]    [Pg.367]    [Pg.109]    [Pg.77]    [Pg.115]    [Pg.1484]   
See also in sourсe #XX -- [ Pg.79 ]




SEARCH



Biomass properties

Property-example

© 2024 chempedia.info