Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Binary structures descriptions

Figure B3.6.3. Sketch of the coarse-grained description of a binary blend in contact with a wall, (a) Composition profile at the wall, (b) Effective interaction g(l) between the interface and the wall. The different potentials correspond to complete wettmg, a first-order wetting transition and the non-wet state (from above to below). In case of a second-order transition there is no double-well structure close to the transition, but g(l) exhibits a single minimum which moves to larger distances as the wetting transition temperature is approached from below, (c) Temperature dependence of the thickness / of the enriclnnent layer at the wall. The jump of the layer thickness indicates a first-order wetting transition. In the case of a conthuious transition the layer thickness would diverge continuously upon approaching from below. Figure B3.6.3. Sketch of the coarse-grained description of a binary blend in contact with a wall, (a) Composition profile at the wall, (b) Effective interaction g(l) between the interface and the wall. The different potentials correspond to complete wettmg, a first-order wetting transition and the non-wet state (from above to below). In case of a second-order transition there is no double-well structure close to the transition, but g(l) exhibits a single minimum which moves to larger distances as the wetting transition temperature is approached from below, (c) Temperature dependence of the thickness / of the enriclnnent layer at the wall. The jump of the layer thickness indicates a first-order wetting transition. In the case of a conthuious transition the layer thickness would diverge continuously upon approaching from below.
Adsorption of hard sphere fluid mixtures in disordered hard sphere matrices has not been studied profoundly and the accuracy of the ROZ-type theory in the description of the structure and thermodynamics of simple mixtures is difficult to discuss. Adsorption of mixtures consisting of argon with ethane and methane in a matrix mimicking silica xerogel has been simulated by Kaminsky and Monson [42,43] in the framework of the Lennard-Jones model. A comparison with experimentally measured properties has also been performed. However, we are not aware of similar studies for simpler hard sphere mixtures, but the work from our laboratory has focused on a two-dimensional partly quenched model of hard discs [44]. That makes it impossible to judge the accuracy of theoretical approaches even for simple binary mixtures in disordered microporous media. [Pg.306]

The Zintl-Klemm concept evolved from the seminal ideas of E. ZintI that explained the structural behavior of main-group (s-p) binary intermetaUics in terms of the presence of both ionic and covalent parts in their bonding description [31, 37]. Instead of using Hume-Rother/s idea of a valence electron concentration, ZintI proposed an electron transfer from the electropositive to the electronegative partner (ionic part) and related the anionic substructure to known isoelectronic elemental structures (covalent part), e.g., TK in NaTl is isoelectro-nic with C, Si and Ge, and consequenUy a diamond substructure is formed. ZintI hypothesized that the structures of this class of intermetallics would be salt-like [16b, 31 f, 37e]. [Pg.160]

Solid solutions are very common among structurally related compounds. Just as metallic elements of similar structure and atomic properties form alloys, certain chemical compounds can be combined to produce derivative solid solutions, which may permit realization of properties not found in either of the precursors. The combinations of binary compounds with common anion or common cation element, such as the isovalent alloys of IV-VI, III-V, II-VI, or I-VII members, are of considerable scientific and technological interest as their solid-state properties (e.g., electric and optical such as type of conductivity, current carrier density, band gap) modulate regularly over a wide range through variations in composition. A general descriptive scheme for such alloys is as follows [41]. [Pg.22]

The microheterogeneity coefficient was introduced only for the description of the microstructure of binary copolymers with symmetric units. At increased number of unit types and/or when account is taken of structural isomerism, the role of Km will be performed by other parameters analogous to it. A general strategy for the choice of these latter has been elaborated in detail [12], while their values have been measured via NMR spectroscopic techniques for a variety of polycondensation polymers [13]. [Pg.167]

The situation in the solid state is generally more complex. Several examples of binary systems were seen in which, in the solid state, a number of phases (intermediate and terminal) are formed. See for instance Figs 2.18-2.21. Both stoichiometric phases (compounds) and variable composition phases (solid solutions) may be considered and, as for their structures, both fully ordered or more or less completely disordered phases. This variety of types is characteristic for the solid alloys. After a few comments on liquid alloys, particular attention will therefore be dedicated in the following paragraphs to the description and classification of solid intermetallic phases. [Pg.81]

Thermochemistry of cluster compounds. In this short summary of cluster structures and their bonding, a few remarks on their thermochemical behaviour are given, in view of a possible relationship with the intermetallic alloy properties. To this end we remember that for molecular compounds, as for several organic compounds, concepts such as bond energies and their relation to atomization energies and thermodynamic formation functions play an important role in the description of these compounds and their properties. A classical example is given by some binary hydrocarbon compounds. [Pg.293]

An extension of the application of these maps to the systematic description of certain groups of ternary alloys has been presented also by Pettifor (1988a, b). Composition averaged Mendeleev numbers can be used, for instance, in the description of pseudo-binary, ternary or quaternary alloys. All these maps show well-defined domains of structural stability for a given stoichiometry, thus making the search easier for new ternary or quaternary alloys with a particular structure type (and which, as a consequence, may have the potential of interesting properties and applications (Pettifor 1988a, b)). [Pg.308]

It has already been noticed (see 3.9.4) that according to the mentioned concepts several ternary compounds may be considered as the result of a sort of structural interaction between binary compounds. As a consequence some regular trend could also be predicted for their occurrence in their phase diagrams and in the description (and perhaps modelling) of their thermodynamic properties. A few details about this type of structural relationships will be considered in the following and, in this introduction, examples of blocks of simple structural types and of their combination in more complex types will be described. [Pg.629]

Much of what we need to know abont the thermodynamics of composites has been described in the previous sections. For example, if the composite matrix is composed of a metal, ceramic, or polymer, its phase stability behavior will be dictated by the free energy considerations of the preceding sections. Unary, binary, ternary, and even higher-order phase diagrams can be employed as appropriate to describe the phase behavior of both the reinforcement or matrix component of the composite system. At this level of discussion on composites, there is really only one topic that needs some further elaboration a thermodynamic description of the interphase. As we did back in Chapter 1, we will reserve the term interphase for a phase consisting of three-dimensional structure (e.g., with a characteristic thickness) and will use the term interface for a two-dimensional surface. Once this topic has been addressed, we will briefly describe how composite phase diagrams differ from those of the metal, ceramic, and polymer constituents that we have studied so far. [Pg.200]

Recent developments in the synthesis, structures, and properties of ionic/covalent ternary nitrides are reviewed. A description, including synthetic conditions, is given of preparative methods reported in the literature. Solid state synthetic reactions from binary nitrides as well as novel synthetic approaches such as amide synthesis and ammonolysis of ternary oxides are described. Examples of common structure types as well as electronic and magnetic properties are discussed. [Pg.90]


See other pages where Binary structures descriptions is mentioned: [Pg.38]    [Pg.9]    [Pg.2377]    [Pg.735]    [Pg.245]    [Pg.67]    [Pg.160]    [Pg.161]    [Pg.19]    [Pg.347]    [Pg.80]    [Pg.250]    [Pg.67]    [Pg.178]    [Pg.184]    [Pg.186]    [Pg.187]    [Pg.205]    [Pg.647]    [Pg.734]    [Pg.142]    [Pg.222]    [Pg.143]    [Pg.366]    [Pg.88]    [Pg.81]    [Pg.261]    [Pg.263]    [Pg.350]    [Pg.270]    [Pg.319]    [Pg.414]    [Pg.45]    [Pg.76]    [Pg.24]    [Pg.263]    [Pg.207]    [Pg.131]    [Pg.173]    [Pg.188]   
See also in sourсe #XX -- [ Pg.680 , Pg.681 , Pg.682 ]




SEARCH



Binary structures

Structural description

Structures description

© 2024 chempedia.info