Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Electrophilic substitution benzenes

Phosphinine and its derivatives are clearly aromatic however, they are considerably more reactive than benzene. The most significant influence on the reactivity of these molecules is the presence of the lone pair on phosphorus, and two significant reactions are its complexation with a variety of metals, and nucleophilic attack to form (ultimately) A5-phosphorins. The 71-system can undergo [4+2] cycloadditions, under milder conditions than benzene. Electrophilic substitution reactions on carbon are considered to be impossible <2001CRV1229>. [Pg.1016]

As might be expected, because pyridine is electron poor compared with benzene, electrophilic substitutions on quinoline and isoquinoline take place at the benzene ring. As with naphthalene, substitution at the carbons next to the ring fusion predominates. [Pg.1144]

The most widely used reactions are those of electrophilic substitution, and under controlled conditions a maximum of three substituting groups, e.g. -NO2 (in the 1,3,5 positions) can be introduced by a nitric acid/sul-phuric acid mixture. Hot cone, sulphuric acid gives sulphonalion whilst halogens and a Lewis acid catalyst allow, e.g., chlorination or brom-ination. Other methods are required for introducing fluorine and iodine atoms. Benzene undergoes the Friedel-Crafts reaction. ... [Pg.55]

The heats of formation of Tt-complexes are small thus, — A//2soc for complexes of benzene and mesitylene with iodine in carbon tetrachloride are 5-5 and i2-o kj mol , respectively. Although substituent effects which increase the rates of electrophilic substitutions also increase the stabilities of the 7r-complexes, these effects are very much weaker in the latter circumstances than in the former the heats of formation just quoted should be compared with the relative rates of chlorination and bromination of benzene and mesitylene (i 3 o6 x 10 and i a-Sq x 10 , respectively, in acetic acid at 25 °C). [Pg.117]

So far we ve been concerned only with electrophilic substitution of benzene Two impor tant questions arise when we turn to substitution on rings that already bear at least one substituent... [Pg.488]

The earliest reported reference describing the synthesis of phenylene sulfide stmctures is that of Friedel and Crafts in 1888 (6). The electrophilic reactions studied were based on reactions of benzene and various sulfur sources. These electrophilic substitution reactions were characterized by low yields (50—80%) of rather poorly characterized products by the standards of 1990s. Products contained many by-products, such as thianthrene. Results of self-condensation of thiophenol, catalyzed by aluminum chloride and sulfuric acid (7), were analogous to those of Friedel and Crafts. [Pg.441]

The PMBs, when treated with electrophilic reagents, show much higher reaction rates than the five lower molecular weight homologues (benzene, toluene, (9-, m- and -xylene), because the benzene nucleus is highly activated by the attached methyl groups (Table 2). The PMBs have reaction rates for electrophilic substitution ranging from 7.6 times faster (sulfonylation of durene) to ca 607,000 times faster (nuclear chlorination of durene) than benzene. With rare exception, the PMBs react faster than toluene and the three isomeric dimethylbenzenes (xylenes). [Pg.504]

Electrophilic substitution of thiophene occurs largely at the 2-position and the reactivity of the ring is greater than that of benzene. 3-Substituted derivatives are generally prepared by indirect means or through ring cyclization reactions. [Pg.19]

Toluene, an aLkylben2ene, has the chemistry typical of each example of this type of compound. However, the typical aromatic ring or alkene reactions are affected by the presence of the other group as a substituent. Except for hydrogenation and oxidation, the most important reactions involve either electrophilic substitution in the aromatic ring or free-radical substitution on the methyl group. Addition reactions to the double bonds of the ring and disproportionation of two toluene molecules to yield one molecule of benzene and one molecule of xylene also occur. [Pg.175]

Anthraquinone dyes are derived from several key compounds called dye intermediates, and the methods for preparing these key intermediates can be divided into two types (/) introduction of substituent(s) onto the anthraquinone nucleus, and (2) synthesis of an anthraquinone nucleus having the desired substituents, starting from benzene or naphthalene derivatives (nucleus synthesis). The principal reactions ate nitration and sulfonation, which are very important ia preparing a-substituted anthraquiaones by electrophilic substitution. Nucleus synthesis is important for the production of P-substituted anthraquiaones such as 2-methylanthraquiQone and 2-chloroanthraquiaone. Friedel-Crafts acylation usiag aluminum chloride is appHed for this purpose. Synthesis of quinizatia (1,4-dihydroxyanthraquiQone) is also important. [Pg.309]

The electrophilic substitution of thiophene is much easier than that of benzene thus, thiophene is protonated in aqueous sulphuric acid about 10 times more rapidly than benzene, and it is brominated by molecular bromine in acetic acid about 10 times more rapidly than benzene. Benzene in turn is between 10 and lo times more reactive than an uncharged pyridine ring to electrophilic substitution. [Pg.44]

Quantitative data are available on the effect on electrophilic substitution reactions of the fusion of a benzene ring to the b face of a furan or thiophene ring. The overall effect is to decrease reactivity this decrease is much more pronounced in the case of fusion to a furan than to a thiophene ring. As a consequence the overall reactivities of benzo[Z)]furan and benzo[Z)]thiophene are approximately equal 71AHC(13)235). [Pg.44]

The range of preparatively useful electrophilic substitution reactions is often limited by the acid sensitivity of the substrates. Whereas thiophene can be successfully sulfonated in 95% sulfuric acid at room temperature, such strongly acidic conditions cannot be used for the sulfonation of furan or pyrrole. Attempts to nitrate thiophene, furan or pyrrole under conditions used to nitrate benzene and its derivatives invariably result in failure. In the... [Pg.45]

In benz- and phenyl-azolones, electrophilic substitution often occurs in the benzene ring such reactions are considered as reactions of substituents (see Sections 4.02.3.2.1 and 4.02.3.4.1). [Pg.56]

In compounds with a fused benzene ring, electrophilic substitution on carbon usually occurs in the benzenoid ring in preference to the heterocyclic ring. Frequently the orientation of substitution in these compounds parallels that in naphthalene. Conditions are often similar to those used for benzene itself. The actual position attacked varies compare formulae (341)-(346) where the orientation is shown for nitration sulfonation is usually similar for reasons which are not well understood. [Pg.85]

An 5-l-/w-nitrophenyl-2-benzoylethyl thioether was used to protect thiophenols -during electrophilic substitution reactions of the benzene ring. ... [Pg.296]

The effect of substituents on electrophilic substitution can be placed on a quantitative basis by use ofpartial rate factors. The reactivity of each position in a substituted aromatic compound can be compared with that of benzene by measuring the overall rate, relative to benzene, and dissecting the total rate by dividing it among the ortho, meta, and para... [Pg.562]

Pyridine lies near one extreme in being far less reactive than benzene toward substitution by electrophilic reagents. In this respect it resembles strongly deactivated aromatic compounds such as nitrobenzene. It is incapable of being acylated or alkylated under Friedel-Crafts conditions, but can be sulfonated at high temperature. Electrophilic substitution in pyridine, when it does occur, takes place at C-3. [Pg.507]

Evidently S, is a measure of intramolecular selectivity because it involves a ratio, the contribution of the benzene substitution rate disappears, and the selectivity factor expresses the selectivity of the reagent X in Eq. (7-83) for the para position relative to the meta position. Each individual partial rate factor, on the other hand, is expressive of an inteimolecular selectivity thus p is a measure of the selectivity of the reagent for the para position in CgHsY relative to benzene. It was observed that Eq. (7-85), where Cmc is a constant, is satisfied for a large number of electrophilic substitutions of toluene. [Pg.374]

Equation (7-85) is a selectivity-reactivity relationship, with lower values of Sf denoting lower selectivity. Lower values ofpt correspond to greater reactivity, with the limit being a partial rate factor of unity for an infinitely reactive electrophile. This selectivity-reactivity relationship is followed for the electrophilic substitution reactions of many substituted benzenes, although toluene is the best studied of these. [Pg.374]

The most notable chemistry of the biscylopen-tadienyls results from the aromaticity of the cyclopentadienyl rings. This is now far too extensively documented to be described in full but an outline of some of its manifestations is in Fig. 25.14. Ferrocene resists catalytic hydrogenation and does not undergo the typical reactions of conjugated dienes, such as the Diels-Alder reaction. Nor are direct nitration and halogenation possible because of oxidation to the ferricinium ion. However, Friedel-Crafts acylation as well as alkylation and metallation reactions, are readily effected. Indeed, electrophilic substitution of ferrocene occurs with such facility compared to, say, benzene (3 x 10 faster) that some explanation is called for. It has been suggested that. [Pg.1109]

Electron-donor substituents are known to accelerate the rate of electrophilic substitution on benzene, while electron-withdrawing groups are known to retard the reaction. One explanation is that electron donors stabilize the positive charge in the benzenium ion intermediate while electron-withdrawing substituents destabilize the positive charge. [Pg.190]

Pyrrole undergoes electrophilic substitution much in the same way as benzene. [Pg.213]

Benzene and substituted benzenes reaet with electrophiles, leading to new functionality. The two-step mechanism involves initial attack by an electrophile to form an intermediate (benzenium ion), followed by elimination of a proton to generate the substituted benzene. [Pg.214]

The consequences of this replacement gives pyridine a reduced susceptibility to electrophilic substitution compared to benzene, while being more susceptible to... [Pg.302]


See other pages where Electrophilic substitution benzenes is mentioned: [Pg.85]    [Pg.495]    [Pg.437]    [Pg.559]    [Pg.85]    [Pg.85]    [Pg.85]    [Pg.495]    [Pg.437]    [Pg.559]    [Pg.85]    [Pg.85]    [Pg.41]    [Pg.375]    [Pg.3]    [Pg.132]    [Pg.136]    [Pg.90]    [Pg.3]    [Pg.507]    [Pg.441]    [Pg.38]    [Pg.39]    [Pg.287]    [Pg.69]    [Pg.56]    [Pg.85]    [Pg.12]    [Pg.146]   
See also in sourсe #XX -- [ Pg.322 , Pg.328 ]

See also in sourсe #XX -- [ Pg.322 , Pg.328 ]




SEARCH



Aromatic Substitution by Electrophiles (Lewis Acids, E 2 Electrophilic Substitutions in Syntheses of Benzene erivatives

Benzene Electrophilic aromatic substitution reactions

Benzene and Aromaticity Electrophilic Aromatic Substitution

Benzene derivatives electrophilic aromatic substitution

Benzene electrophilic aromatic substitution, product

Benzene electrophilic substitution reactions

Benzene substitution

Benzenes, substituted electrophilic substitutions

Benzenes, substituted electrophilic substitutions

Chemistry of Benzene Electrophilic Aromatic Substitution

Electrophiles with substituted benzenes

Electrophilic Aromatic Substitution in Polysubstituted Benzenes

Electrophilic Aromatic Substitution on Substituted Benzenes

Electrophilic Attack on C-Substituted Benzenes

Electrophilic Attack on X-Substituted Benzenes

Electrophilic Attack on Z-Substituted Benzenes

Electrophilic aromatic substitution benzene derivatives, nomenclature

Electrophilic aromatic substitution benzenes

Electrophilic aromatic substitution of benzene

Electrophilic aromatic substitution of substituted benzenes

Electrophilic substitution reaction monosubstituted benzene

Electrophilic substitution, of benzene

How Do Existing Substituents on Benzene Affect Electrophilic Aromatic Substitution

Limitations on Electrophilic Substitution Reactions with Substituted Benzenes

Phenyl-azolones, electrophilic substitution often occurs in the benzene

Representative Electrophilic Aromatic Substitution Reactions of Benzene

Substituted benzenes Friedel-Crafts electrophiles

Substitution substituted benzenes

Substitution, electrophilic monosubstituted benzenes

Synthesis of Benzene Derivatives Electrophilic Aromatic Substitution

© 2024 chempedia.info