Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Benzene Electrophilic aromatic substitution reactions

In addition to benzene and naphthalene derivatives, heteroaromatic compounds such as ferrocene[232, furan, thiophene, selenophene[233,234], and cyclobutadiene iron carbonyl complexpSS] react with alkenes to give vinyl heterocydes. The ease of the reaction of styrene with sub.stituted benzenes to give stilbene derivatives 260 increases in the order benzene < naphthalene < ferrocene < furan. The effect of substituents in this reaction is similar to that in the electrophilic aromatic substitution reactions[236]. [Pg.56]

REPRESENTATIVE ELECTROPHILIC AROMATIC SUBSTITUTION REACTIONS OF BENZENE... [Pg.474]

Representative Electrophilic Aromatic Substitution Reactions of Benzene... [Pg.475]

With this as background let us now examine each of the electrophilic aromatic substitution reactions presented m Table 12 1 m more detail especially with respect to the electrophile that attacks benzene... [Pg.477]

Because the carbon atom attached to the ring is positively polarized a carbonyl group behaves m much the same way as a trifluoromethyl group and destabilizes all the cyclo hexadienyl cation intermediates m electrophilic aromatic substitution reactions Attack at any nng position m benzaldehyde is slower than attack m benzene The intermediates for ortho and para substitution are particularly unstable because each has a resonance structure m which there is a positive charge on the carbon that bears the electron withdrawing substituent The intermediate for meta substitution avoids this unfavorable juxtaposition of positive charges is not as unstable and gives rise to most of the product... [Pg.498]

Section 12 17 Polycyclic aromatic hydrocarbons undergo the same kind of electrophilic aromatic substitution reactions as benzene... [Pg.512]

Among the most useful electrophilic aromatic substitution reactions In the laboratory is alkylation—the introduction of an alkyl group onto the benzene ring. Called the Friedel-Crafts reaction after its discoverers, the reaction is carried out... [Pg.554]

Another drawback to the use of amino-substituted benzenes in electrophilic aromatic substitution reactions is that Friedel-Crafts reactions are not successful (Section 16.3). The amino group forms an acid-base complex with the AICI3 catalyst, which prevents further reaction from occurring. Both drawbacks can be overcome, however, b3 carrying out electrophilic aromatic substitution reactions on the corresponding amide rather than on the free amine. [Pg.939]

Unlike benzene, pyridine undergoes electrophilic aromatic substitution reactions with great difficulty. Halogenation can be carried out under drastic conditions, but nitration occurs in very low yield, and Friedel-Crafts reactions are not successful. Reactions usually give the 3-substituted product. [Pg.949]

First introduced by Charles Friedel and James Crafts in 1877, the FC alkylation is an electrophilic aromatic substitution reaction where the electrophile is a carbocation, R. This carhocation is generated hy AICI3-catalysed ionization of alkyl halide. For example, benzene reacts with isopropylchloride in the presence of Lewis acid to produce isopropylbenzene. [Pg.255]

The quantum-chemical calculation of charge-transfer states as possible intermediates in electrophilic aromatic substitution reactions, making allowance for solvation effects, has been reviewed.6 It has been shown that a simple scaled Hartree-Fock ab initio model describes the ring proton affinity of some polysubstituted benzenes, naphthalenes, biphenylenes, and large alternant aromatics, in agreement with experimental values. The simple additivity rule observed previously in smaller... [Pg.259]

Although aromatic compounds have multiple double bonds, these compounds do not undergo addition reactions. Their lack of reactivity toward addition reactions is due to the great stability of the ring systems that result from complete n electron delocalization (resonance). Aromatic compounds react by electrophilic aromatic substitution reactions, in which the aromaticity of the ring system is preserved. For example, benzene reacts with bromine to form bromobenzene. [Pg.17]

In another example of an electrophilic aromatic substitution reaction, benzene reacts with a mixture of concentrated nitric and sulfuric acids to create nitrobenzene. [Pg.20]

The fully delocalized n electron system of the benzene ring remains intact during electrophilic aromatic substitution reactions. However, in the Birch reduction, this is not the case. In the Birch reduction, benzene, in the presence of sodium metal in liquid ammonia and methyl alcohol, produces a nonconjugated diene system. This reaction provides a convenient method for making a wide variety of useful cyclic dienes. [Pg.24]

An alkyl group can be added to a benzene molecule by an electrophile aromatic substitution reaction called the Friedel-Crafts alkylation reaction. One example is the addition of a methyl group to a benzene ring. [Pg.25]

Friedel-Crafts type reactions of strongly deactivated arenes have been the subject of several recent studies indicating involvement of superelectrophilic intermediates. Numerous electrophilic aromatic substitution reactions only work with activated or electron-rich arenes, such as phenols, alkylated arenes, or aryl ethers.5 Since these reactions involve weak electrophiles, aromatic compounds such as benzene, chlorobenzene, or nitrobenzene, either do not react, or give only low yields of products. For example, electrophilic alkylthioalkylation generally works well only with phenolic substrates.6 This can be understood by considering the resonance stabilization of the involved thioalkylcarbenium ion and the delocalization of the electrophilic center (eq 4). With the use of excess Fewis acid, however, the electrophilic reactivity of the alkylthiocarbenium ion can be... [Pg.19]

Explain why pyridine is less reactive than benzene in electrophilic aromatic substitution reactions. [Pg.252]

The sulfoxidation of benzene (Table 4, entry 38) yields benzenesulfonic acids and the respective derivatives. The electrophilic aromatic substitution reaction gives high yields and aqueous sulfuric acid or oleum is used for the sulfonation reaction, which is performed in cascades of reactor vessels. [Pg.24]

Regioselectivity in the formation of regioisomers is also observed in electrophilic aromatic substitution reactions. In the case of monosubstituted benzene derivatives, there are three possible regiosomeric products that form at different rates, based on the mechanism of the reaction (see Figure 13). see also Berzelius, Jons Jakob Chirality Dalton, John Davy, Humphry Molecular Structure Scheele, Carl Wohler, Friedrich. [Pg.261]

All of the electrophilic aromatic substitution reactions follow this same general mechanism. The only difference is the structure of the electrophile and how it is generated. Let s look at a specific example, the nitration of benzene. This reaction is accomplished by reacting benzene with nitric acid in the presence of sulfuric acid ... [Pg.673]


See other pages where Benzene Electrophilic aromatic substitution reactions is mentioned: [Pg.950]    [Pg.498]    [Pg.950]    [Pg.548]    [Pg.156]    [Pg.897]    [Pg.49]    [Pg.146]    [Pg.505]    [Pg.957]    [Pg.230]    [Pg.285]    [Pg.30]    [Pg.33]    [Pg.113]    [Pg.247]    [Pg.672]   


SEARCH



Aromaticity benzene

Aromaticity electrophilic aromatic substitution

Aromatics electrophilic substitution

Benzene aromatic substitution

Benzene aromatic substitution reactions

Benzene electrophilic aromatic

Benzene electrophilic reactions

Benzene electrophilic substitution

Benzene reactions

Benzene substitution

Benzene substitution reaction

Benzenes, substituted electrophilic substitutions

Electrophile Electrophilic aromatic substitution

Electrophile reactions Electrophilic aromatic

Electrophilic aromatic reactions

Electrophilic aromatic substitution benzenes

Electrophilic substitution reaction

Representative Electrophilic Aromatic Substitution Reactions of Benzene

Substitution electrophilic aromatic

Substitution electrophilic aromatic substitutions

Substitution reactions aromatic

Substitution reactions electrophile

Substitution reactions electrophilic aromatic

Substitution substituted benzenes

© 2024 chempedia.info