Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Behavioural Bends

By virtue of their simple stnicture, some properties of continuum models can be solved analytically in a mean field approxunation. The phase behaviour interfacial properties and the wetting properties have been explored. The effect of fluctuations is hrvestigated in Monte Carlo simulations as well as non-equilibrium phenomena (e.g., phase separation kinetics). Extensions of this one-order-parameter model are described in the review by Gompper and Schick [76]. A very interesting feature of tiiese models is that effective quantities of the interface—like the interfacial tension and the bending moduli—can be expressed as a fiinctional of the order parameter profiles across an interface [78]. These quantities can then be used as input for an even more coarse-grained description. [Pg.2381]

What is important to realise is that a polymer may be tough when exposed to tensile load but brittle when assessed by an Izod-type test where a notched sample is subjected to a bending load. Table 9.3 attempts to summarise the behaviour of typical polymers to different stresses. [Pg.191]

Takahashi, M. (1981). Bending creep behaviour of plywoods under long term exposure to fungal attack. International Research Group on Wood Preservation, Doc. No. IRGAVP 81-2163. [Pg.227]

Fig. 5.1 Mode number dependence of the relaxation times Tj and T2 (solid lines). The dashed-dotted line shows the relaxation time ip in the Rouse model (Eq. 3.12). The horizontal dashed line displays the value of r. The dashed and the dotted lines represent the relaxation time when the influence of the chain stiffness is considered mode description of the chain statistics iq (dashed, Eq. 5.11) and bending force model tp (dotted, Eq. 5.7). The behaviour of the relaxation time used in the phenomenological description is also shown for the lowest modes (see text). (Reprinted with permission from [217]. Copyright 1999 American Institute of Physics)... Fig. 5.1 Mode number dependence of the relaxation times Tj and T2 (solid lines). The dashed-dotted line shows the relaxation time ip in the Rouse model (Eq. 3.12). The horizontal dashed line displays the value of r. The dashed and the dotted lines represent the relaxation time when the influence of the chain stiffness is considered mode description of the chain statistics iq (dashed, Eq. 5.11) and bending force model tp (dotted, Eq. 5.7). The behaviour of the relaxation time used in the phenomenological description is also shown for the lowest modes (see text). (Reprinted with permission from [217]. Copyright 1999 American Institute of Physics)...
The viscoelastic behaviour of rubbers is not linear stress is not proportional to strain, particularly at high strains. The non-linearity is more pronounced in tension or compression than in shear. The result in practice is that dynamic stiffness and moduli are strain dependent and the hysteresis loop will not be a perfect ellipse. If the strain in the test piece is not uniform, it is necessary to apply a shape factor in the same manner as for static tests. This is usually the case in compression and even in shear there may be bending in addition to pure shear. Relationships for shear, compression and tension taking these factors into account have been given by Payne3 and Davey and Payne4 but, because the relationships between dynamic stiffness and the basic moduli may be complex and only approximate, it may be preferable for many engineering applications to work in stiffness, particularly if products are tested. [Pg.178]

Perhaps the most simple approach to measuring the low temperature behaviour of rubbers is to find the temperature at which it has become so stiff as to be glassy and brittle. The main disadvantage of this approach is that only one facet of low temperature behaviour is measured and that is at a point where, for many purposes, the rubber has long since become inadequate for its job. Nevertheless, brittleness temperature has been found to be a useful measure and innumerable ad hoc brittleness tests have been devised. These tests usually take the form of quickly bending a cooled strip of rubber and are almost inevitably very operator dependent and do not define the strain rate or the degree of strain precisely. Hence, they show poor between-laboratory variability. [Pg.296]

As the previous sections have shown, there are a large number of low temperature tests in existence. Even when ad hoc bending tests are disregarded, together with the use of the normal range of physical tests, such as tensile modulus and resilience, and the automation of a mechanical test by thermal analysis, there remain several types of specially developed low temperature tests. The various tests do not all have equal relevance to a given product. A test, or tests, should wherever possible, be chosen to provide the information most relevant to the particular application, but for many quality control purposes a test is used simply as a general indication of low temperature behaviour. Whatever the relative merits of the different methods in any situation, the question of correlation between the methods is frequently asked. [Pg.298]

In comparison to a conventional polymer and l.c. mentioned above, we will now discuss the PVT behavior of a l.c. side chain polymer, which has linked mesogenic moieties as side chains, and is very similar to the previous monomer. The experimental results are shown in Fig. 5. It is obvious, that the phase behavior of the l.c. polymer differs from that of a 1-l.c. and amorphous polymer. At high temperature we observe a transformation from the isotropic polymer melt into the l.c. phase, indicated by the jump in the V(T) curve. At low temperatures no crystallisation is observed but the bend in the curves signifies a glass transition. Obviously the phase behaviour is determined by the combination of l.c. and polymer properties. [Pg.110]

By studying the behaviour of a laser signal into the fibre it is possible to monitor pipe movements, vibration, temperature variations, inclination, bending and many other geometric and physical parameters. By setting the appropriate thresholds it will be possible to implement automatic alarms from remote locations. The applications are very interesting mainly in areas... [Pg.69]

When the experimentalist set an ambitious objective to evaluate micromechanical properties quantitatively, he will predictably encounter a few fundamental problems. At first, the continuum description which is usually used in contact mechanics might be not applicable for contact areas as small as 1 -10 nm [116,117]. Secondly, since most of the polymers demonstrate a combination of elastic and viscous behaviour, an appropriate model is required to derive the contact area and the stress field upon indentation a viscoelastic and adhesive sample [116,120]. In this case, the duration of the contact and the scanning rate are not unimportant parameters. Moreover, bending of the cantilever results in a complicated motion of the tip including compression, shear and friction effects [131,132]. Third, plastic or inelastic deformation has to be taken into account in data interpretation. Concerning experimental conditions, the most important is to perform a set of calibrations procedures which includes the (x,y,z) calibration of the piezoelectric transducers, the determination of the spring constants of the cantilever, and the evaluation of the tip shape. The experimentalist has to eliminate surface contamination s and be certain about the chemical composition of the tip and the sample. [Pg.128]

As early as 1972, podand Ca2+ carriers with transmembrane ionophore-type behaviour were reported by the Eidgenossische Technische Hochschule (ETH) group of Simon in Zurich.5 These hosts (1e.g. 3.13) rely on the polar amide groups for their binding ability, and the fact that the long ester arms are flexible and able to bend back on themselves to simultaneously coordinate the metal cation. [Pg.152]


See other pages where Behavioural Bends is mentioned: [Pg.2363]    [Pg.2377]    [Pg.146]    [Pg.433]    [Pg.48]    [Pg.145]    [Pg.167]    [Pg.274]    [Pg.290]    [Pg.569]    [Pg.1256]    [Pg.213]    [Pg.118]    [Pg.810]    [Pg.437]    [Pg.6]    [Pg.42]    [Pg.180]    [Pg.81]    [Pg.82]    [Pg.83]    [Pg.36]    [Pg.58]    [Pg.58]    [Pg.239]    [Pg.231]    [Pg.144]    [Pg.109]    [Pg.81]    [Pg.88]    [Pg.269]    [Pg.65]    [Pg.284]    [Pg.15]    [Pg.27]    [Pg.114]    [Pg.146]    [Pg.505]    [Pg.605]    [Pg.359]   
See also in sourсe #XX -- [ Pg.333 , Pg.489 , Pg.663 ]




SEARCH



© 2024 chempedia.info