Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Basis numerical

In principle, three basically different types of reaction modes are applied for cross-coupling reactions of allenes. First, cross-couplings of allenes with suitable halogen or metal substituents at one of the sp2-hybridized carbons furnish products still bearing the intact cumulene it-system. On this basis, numerous reactions for conversions of precursor 1 or 3 into substituted allenes 2 have been developed (Schemes 14.1 and 14.2). [Pg.847]

A dynamic statistical approach is used to predict dynamic stresses in a hyperboloidal cooling tower due to earthquakes. It is shown that the configuration associated with one circumferential wave is the only one which is excitable by earthquake force and that the first mode of such configuration is dominant. An equivalent static load is calculated on this basis. Numerical data presented give coefficients for equivalent static loads, natural frequencies of cooling towers, and static stresses for a seismic load. 21 refs, cited. [Pg.304]

Finally, anionic well potential calculations were performed in molecule cases. The molecule selected for illustration was diatomic CO, and the well potential reference for a molecule must be zero at the region, infinitely apart from the molecule in contrast to the solid case. The molecule CO has interatomic separation of 0.11282 nm and an O " radius of 0.122 nm, respectively. Basis numerical atomic orbitals were ls-2p on both C and O atoms. The calculated well potential depth was —0.36 Eh which was shallower than the value of about —1 Eh usually used. [Pg.446]

The predicted cumulative cash-flow curve for a project throughout its life forms the basis for more detailed evaluation. Many quantitative measures or indices have been proposed. In each case, important features of the cumulative cash-flow curve are identified and transformed into a single numerical measure as an index. [Pg.423]

Maxwell s equation are the basis for the calculation of electromagnetic fields. An exact solution of these equations can be given only in special cases, so that numerical approximations are used. If the problem is two-dimensional, a considerable reduction of the computation expenditure can be obtained by the introduction of the magnetic vector potential A =VxB. With the assumption that all field variables are sinusoidal, the time dependence... [Pg.312]

The rocksalt stmcture is illustrated in figure Al.3.5. This stmcture represents one of the simplest compound stmctures. Numerous ionic crystals fonn in the rocksalt stmcture, such as sodium chloride (NaCl). The conventional unit cell of the rocksalt stmcture is cubic. There are eight atoms in the conventional cell. For the primitive unit cell, the lattice vectors are the same as FCC. The basis consists of two atoms one at the origin and one displaced by one-half the body diagonal of the conventional cell. [Pg.99]

The Hamiltonian matrix factorizes into blocks for basis functions having connnon values of F and rrip. This reduces the numerical work involved in diagonalizing the matrix. [Pg.139]

Unfortunately, the resources required for these numerically exact methods grow exponentially with the number of degrees of freedom in the system of interest. Without the use of clever algorithms to optimize the basis set used [106,107], this limits the range of systems treatable to 4-6 degrees of freedom (3-4 atoms). For larger systems, the MCTDH method [19,20,108] provides a... [Pg.259]

In the work of King, Dupuis, and Rys [15,16], the mabix elements of the Coulomb interaction term in Gaussian basis set were evaluated by solving the differential equations satisfied by these matrix elements. Thus, the Coulomb matrix elements are expressed in the form of the Rys polynomials. The potential problem of this method is that to obtain the mabix elements of the higher derivatives of Coulomb interactions, we need to solve more complicated differential equations numerically. Great effort has to be taken to ensure that the differential equation solver can solve such differential equations stably, and to... [Pg.409]

In this chapter, recent advances in the theory of conical intersections for molecules with an odd number of electrons are reviewed. Section II presents the mathematical basis for these developments, which exploits a degenerate perturbation theory previously used to describe conical intersections in nonrelativistic systems [11,12] and Mead s analysis of the noncrossing rule in molecules with an odd number of electrons [2], Section III presents numerical illustrations of the ideas developed in Section n. Section IV summarizes and discusses directions for future work. [Pg.452]

The classical microscopic description of molecular processes leads to a mathematical model in terms of Hamiltonian differential equations. In principle, the discretization of such systems permits a simulation of the dynamics. However, as will be worked out below in Section 2, both forward and backward numerical analysis restrict such simulations to only short time spans and to comparatively small discretization steps. Fortunately, most questions of chemical relevance just require the computation of averages of physical observables, of stable conformations or of conformational changes. The computation of averages is usually performed on a statistical physics basis. In the subsequent Section 3 we advocate a new computational approach on the basis of the mathematical theory of dynamical systems we directly solve a... [Pg.98]

On the basis of these considerations it is suggested that the design of numerical integration techniques might employ the following two hypotheses ... [Pg.320]

Several functional forms have been investigated for the basis functions Given the vast experience of using Gaussian functions in Hartree-Fock theory it will come as no surprise to learn that such functions have also been employed in density functional theory. However, these are not the only possibility Slater type orbitals are also used, as are numerical... [Pg.151]

The application of density functional theory to isolated, organic molecules is still in relative infancy compared with the use of Hartree-Fock methods. There continues to be a steady stream of publications designed to assess the performance of the various approaches to DFT. As we have discussed there is a plethora of ways in which density functional theory can be implemented with different functional forms for the basis set (Gaussians, Slater type orbitals, or numerical), different expressions for the exchange and correlation contributions within the local density approximation, different expressions for the gradient corrections and different ways to solve the Kohn-Sham equations to achieve self-consistency. This contrasts with the situation for Hartree-Fock calculations, wlrich mostly use one of a series of tried and tested Gaussian basis sets and where there is a substantial body of literature to help choose the most appropriate method for incorporating post-Hartree-Fock methods, should that be desired. [Pg.157]

In hybrid DET-Gaussian methods, a Gaussian basis set is used to obtain the best approximation to the three classical or one-election parts of the Schroedinger equation for molecules and DET is used to calculate the election correlation. The Gaussian parts of the calculation are carried out at the restiicted Hartiee-Fock level, for example 6-31G or 6-31 lG(3d,2p), and the DFT part of the calculation is by the B3LYP approximation. Numerous other hybrid methods are currently in use. [Pg.329]

This reference work differs from Beilstein in that it is baaed upon structural formulae and compounds are grouped according to the carbon skeleton rather than the functional group the latter system has the advantage that closely related compounds are grouped together. The volumes are not published in numerical order but rather on the basis of fields of current interest. They are a valuable supplement to Beilstein. The volumes which have been published to date (1955) are ... [Pg.1129]


See other pages where Basis numerical is mentioned: [Pg.117]    [Pg.97]    [Pg.59]    [Pg.30]    [Pg.258]    [Pg.117]    [Pg.97]    [Pg.59]    [Pg.30]    [Pg.258]    [Pg.89]    [Pg.513]    [Pg.981]    [Pg.1548]    [Pg.2174]    [Pg.2174]    [Pg.2224]    [Pg.2226]    [Pg.2291]    [Pg.2367]    [Pg.2835]    [Pg.213]    [Pg.410]    [Pg.514]    [Pg.609]    [Pg.99]    [Pg.114]    [Pg.193]    [Pg.274]    [Pg.82]    [Pg.89]    [Pg.140]    [Pg.152]    [Pg.152]    [Pg.18]    [Pg.79]    [Pg.329]    [Pg.1045]    [Pg.44]    [Pg.45]   
See also in sourсe #XX -- [ Pg.99 ]

See also in sourсe #XX -- [ Pg.99 ]




SEARCH



© 2024 chempedia.info