Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bases. enones

The formation of a diverse array of five-membered ring heterocycles via the cycloaddition of isocyanides with furan- or pyrrole-based enones was reported. The reaction mechanism is discussed and an example is shown below <06OL3975>. [Pg.193]

Sodium borohydride-aqueous base. Enone reduction. 2,6-Di-t-butyl- Formation of aryl radicals. Redn intermediates. Addition to a side-chain 6 Organotelluride anions. Ditellun are useful for phenylseleno removal front... [Pg.326]

Mild conditions (usually base) give the alcohol, more vigorous conditions (acid or base) give the enone. [Pg.30]

Cydopentane reagents used in synthesis are usually derived from cyclopentanone (R.A. Ellison, 1973). Classically they are made by base-catalyzed intramolecular aldol or ester condensations (see also p. 55). An important example is 2-methylcydopentane-l,3-dione. It is synthesized by intramolecular acylation of diethyl propionylsucdnate dianion followed by saponification and decarboxylation. This cyclization only worked with potassium t-butoxide in boiling xylene (R. Bucourt, 1965). Faster routes to this diketone start with succinic acid or its anhydride. A Friedel-Crafts acylation with 2-acetoxy-2-butene in nitrobenzene or with pro-pionyl chloride in nitromethane leads to acylated adducts, which are deacylated in aqueous acids (V.J. Grenda, 1967 L.E. Schick, 1969). A new promising route to substituted cyclopent-2-enones makes use of intermediate 5-nitro-l,3-diones (D. Seebach, 1977). [Pg.81]

Conjugate addition of vinyllithium or a vinyl Grignard reagent to enones and subsequent oxidation afford the 1.4-diketone 16[25]. 4-Oxopentanals are synthesized from allylic alcohols by [3,3]sigmatropic rearrangement of their vinyl ethers and subsequent oxidation of the terminal double bond. Dihydrojasmone (18) was synthesized from allyl 2-octenyl ether (17) based on Claisen rearrangement and oxidation[25] (page 26). [Pg.24]

The intramolecular version for synthesizing cyclic and polycyclic compounds offers a powerful synthetic method for naturally occurring macrocyclic and polycyclic compounds, and novel total syntheses of many naturally occurring complex molecules have been achieved by synthetic designs based on this methodology. Cyclization by the coupling of an enone and alkenyl iodide has been applied to the synthesis of a model compound of l6-membered car-bomycin B 162 in 55% yield. A stoichiometric amount of the catalyst was used because the reaction was carried out under high dilution conditions[132]. [Pg.151]

Sets of empirical rules, often referred to as Woodward s rules or the Woodward-Fieser rules, enable the absorption maxima of dienes (Table 7.11) and enones and dienones (Table 7.12) to be predicted. To the respective base values (absorption wavelength of parent compound) are added the increments for the structural features or substituent groups present. When necessary, a solvent correction is also applied (Table 7.13). [Pg.707]

A further improvement in the cuprate-based methodology for producing PGs utilizes a one-pot procedure (203). The CO-chain precursor (67) was first functionalized with zirconocene chloride hydride ia THF. The vinyl zirconium iatermediate was transmetalated direcdy by treatment with two equivalents of / -butyUithium or methyUithium at —30 to —70° C. Sequential addition of copper cyanide and methyUithium eUcited the /V situ generation of the higher order cyanocuprate which was then reacted with the protected enone to give the PG. [Pg.162]

The dienol is unstable, and two separate processes have been identified for ketonization. These are a 1,5-sigmatropic shift of hydrogen leading back to the enone and a base-catalyzed proton transfer which leads to the / ,y-enone. The deconjugated enone is formed because of the kinetic preference for reprotonation of the dienolate at the a carbon. Photochemical deconjugation is a synthetically useful way of effecting isomerization of a,) -unsaturated ketones and esters to the j ,y-isomers. [Pg.759]

The enantiosclective synthesis of (-)-bilobalide was achieved based on successful synthesis of the chiral enone A and the highly stereoselective reduction of enone A to the desired a-alcohol B. Further transformation to (-)-bilobalide was accomplished following the route used for racemic bilobalide (Ref. 2). [Pg.229]

Conversion of PGA2 to the highly sensitive PGC2 was accomplished by deconjugation of the enone system by formation of the y-extended enolate using rm-alkoxide as base and a-protonation by pH 4 buffer. [Pg.270]

If the equilibrium were established rapidly, reduction of the free ketone as it formed would result in a substantial loss of product. Lithium enolates are more covalent in character than are those of sodium and potassium and consequently are the least basic of the group. This lower thermodynamic basicity appears to be paralleled by a lower kinetic basicity several workers have shown that lithium enolates are weaker bases in the kinetic sense than are those of sodium and potassium." As noted earlier, conjugated enones... [Pg.39]

Until recently, pyridine-type bases have been commonly used to produce conjugated enones from 2-halo ketones yields are usually poor °° and these reactions are frequently accompanied by rearrangement, reduction and salt formation. Thus, Warnhoff found that dehydrobromination of (28) with 2,4-lutidine gave a mixture of (29), (30) and (31) in the ratio 55 25 20. Collidine gave a ratio of 38 25 37, whereas pyridine gave mainly the salt (32). [Pg.287]

Treatment of a residue, obtained after the evaporation of the reaction mixtures of 2-aminopyridines and enone Mannich bases 344 with 70% HCIO4 gave 3-aroyl-l,2,3,4-tetrahydropyrido[l,2-n]pyrimidinium perchlorates 345 (98SL263). Reactions in AcOH afforded a complex reaction mixture with lower overall yields. [Pg.241]

Hie products of this catalytic enanlioselective 1,4-addition still contain an enone moiety, prone lo subsequenl 1,4-addition [73]. An inlriguing queslion regarding stereoconlrol was posed would the stereoselectivity in the second addition step be governed by the catalyst or would there be a major effect fToni the stereocenlers already present Sequential 1,4-addition lo dimetlioxy-substiltiled cyclobexadienone 66 (Scheme 7.18) using the copper catalyst based on IS, R, i j-ligand 18 both in the... [Pg.248]

The biological activity of calicheamicin 4 (simplified structure) is based on the ability to damage DNA. At the reaction site, initially the distance between the triple bonds is diminished by an addition reaction of a sulfur nucleophile to the enone carbon-carbon double bond, whereupon the Bergman cyclization takes place leading to the benzenoid diradical 5, which is capable of cleaving double-stranded DNA." ... [Pg.40]

The hydrogeh atom bound to the amide nitrogen in 15 is rather acidic and it can be easily removed as a proton in the presence of some competent base. Naturally, such an event would afford a delocalized anion, a nucleophilic species, which could attack the proximal epoxide at position 16 in an intramolecular fashion to give the desired azabicyclo[3.2.1]octanol framework. In the event, when a solution of 15 in benzene is treated with sodium hydride at 100 °C, the processes just outlined do in fact take place and intermediate 14 is obtained after hydrolytic cleavage of the trifluoroacetyl group with potassium hydroxide. The formation of azabi-cyclo[3.2.1]octanol 14 in an overall yield of 43% from enone 16 underscores the efficiency of Overman s route to this heavily functionalized bicycle. [Pg.649]

All that remains before the final destination is reached is the introduction of the C-l3 oxygen and attachment of the side chain. A simple oxidation of compound 4 with pyridinium chlorochro-mate (PCC) provides the desired A-ring enone in 75 % yield via a regioselective allylic oxidation. Sodium borohydride reduction of the latter compound then leads to the desired 13a-hydroxy compound 2 (83% yield). Sequential treatment of 2 with sodium bis(trimethylsilyl)amide and /(-lactam 3 according to the Ojima-Holton method36 provides taxol bis(triethylsilyl ether) (86 % yield, based on 89% conversion) from which taxol (1) can be liberated, in 80 % yield, by exposure to HF pyridine in THF at room temperature. Thus the total synthesis of (-)-taxol (1) was accomplished. [Pg.670]

So far, there is no conclusive evidence that a free allyl carbanion is generated from allylsilanes under fluoride ion catalysis. A hypervalent silyl anion, with the silicon still bonded to the allylic moiety, accounts equally well for the results obtained. Based on a variety of experimental results, it is in fact more likely that a nonbasic hypervalent silyl anion is involved rather than the basic free allyl carbanion first postulated14-23. When allylsilanes are treated with fluoride in the presence of enones. 1,4-addition takes place along with some 1,2-addition13. [Pg.937]


See other pages where Bases. enones is mentioned: [Pg.46]    [Pg.46]    [Pg.363]    [Pg.389]    [Pg.157]    [Pg.159]    [Pg.431]    [Pg.440]    [Pg.126]    [Pg.30]    [Pg.30]    [Pg.31]    [Pg.130]    [Pg.312]    [Pg.300]    [Pg.143]    [Pg.114]    [Pg.128]    [Pg.233]    [Pg.239]    [Pg.243]    [Pg.254]    [Pg.334]    [Pg.66]    [Pg.104]    [Pg.347]    [Pg.338]    [Pg.422]    [Pg.308]    [Pg.320]    [Pg.940]   
See also in sourсe #XX -- [ Pg.235 ]




SEARCH



Aziridination of Enones Using Cinchona-Based Chiral Phase-Transfer Catalyst

Enones Lewis base catalysis

Enones Lewis bases

© 2024 chempedia.info