Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Base transesterification

Transesterification of methyl methacrylate with the appropriate alcohol is often the preferred method of preparing higher alkyl and functional methacrylates. The reaction is driven to completion by the use of excess methyl methacrylate and by removal of the methyl methacrylate—methanol a2eotrope. A variety of catalysts have been used, including acids and bases and transition-metal compounds such as dialkjitin oxides (57), titanium(IV) alkoxides (58), and zirconium acetoacetate (59). The use of the transition-metal catalysts allows reaction under nearly neutral conditions and is therefore more tolerant of sensitive functionality in the ester alcohol moiety. In addition, transition-metal catalysts often exhibit higher selectivities than acidic catalysts, particularly with respect to by-product ether formation. [Pg.248]

Polycarbonates are prepared commercially by two processes Schotten-Baumaim reaction of phosgene (qv) and an aromatic diol in an amine-cataly2ed interfacial condensation reaction or via base-cataly2ed transesterification of a bisphenol with a monomeric carbonate. Important products are also based on polycarbonate in blends with other materials, copolymers, branched resins, flame-retardant compositions, foams (qv), and other materials (see Flame retardants). Polycarbonate is produced globally by several companies. Total manufacture is over 1 million tons aimuaHy. Polycarbonate is also the object of academic research studies, owing to its widespread utiUty and unusual properties. Interest in polycarbonates has steadily increased since 1984. Over 4500 pubflcations and over 9000 patents have appeared on polycarbonate. Japan has issued 5654 polycarbonate patents since 1984 Europe, 1348 United States, 777 Germany, 623 France, 30 and other countries, 231. [Pg.278]

Methylphenol is converted to 6-/ f2 -butyl-2-methylphenol [2219-82-1] by alkylation with isobutylene under aluminum catalysis. A number of phenoHc anti-oxidants used to stabilize mbber and plastics against thermal oxidative degradation are based on this compound. The condensation of 6-/ f2 -butyl-2-methylphenol with formaldehyde yields 4,4 -methylenebis(2-methyl-6-/ f2 butylphenol) [96-65-17, reaction with sulfur dichloride yields 4,4 -thiobis(2-methyl-6-/ f2 butylphenol) [96-66-2] and reaction with methyl acrylate under base catalysis yields the corresponding hydrocinnamate. Transesterification of the hydrocinnamate with triethylene glycol yields triethylene glycol-bis[3-(3-/ f2 -butyl-5-methyl-4-hydroxyphenyl)propionate] [36443-68-2] (39). 2-Methylphenol is also a component of cresyHc acids, blends of phenol, cresols, and xylenols. CresyHc acids are used as solvents in a number of coating appHcations (see Table 3). [Pg.67]

Chemistry. Poly(vinyl acetate) can be converted to poly(vinyl alcohol) by transesterification, hydrolysis, or aminolysis. Industrially, the most important reaction is that of transesterification, where a small amount of acid or base is added in catalytic amounts to promote the ester exchange. [Pg.484]

Ester interchange (transesterification) is a reaction between an ester and another compound, characterized by an exchange of alkoxy groups or of acyl groups, and resulting in the formation of a different ester. The process of transesterification is accelerated in the presence of a small amount of an acid or a base. [Pg.383]

Transesterification has a number of important commercial uses. Methyl esters of fatty acids are produced from fats and oils. Transesterification is also the basis of recycling technology to break up poly(ethylene terephthalate) [25038-59-9] to monomer for reuse (29) (see Recycling, plastics). Because vinyl alcohol does not exist, poly(vinyl alcohol) [9002-89-5] is produced commercially by base-cataly2ed alcoholysis of poly(vinyl acetate) [9003-20-7] (see Vinyl polymers). An industrial example of acidolysis is the reaction of poly(vinyl acetate) with butyric acid to form poly(vinyl butyrate) [24991-31-9]. [Pg.388]

KCN, 95% EtOH, 20° to reflux, 12 h, 93% yield.Potassium cyanide is a mild transesterification catalyst, suitable for acid- or base-sensitive compounds. When used with 1,2-diol acetates hydrolysis proceeds slowly until the first acetate is removed. ... [Pg.90]

The PVF is made by acidic reaction between poly(vinyl alcohol) (PVA) and formaldehyde. The poly(vinyl alcohol) is, in turn, made by hydrolysis of poly(vinyl acetate) or transesterification of poly(vinyl acetate). Thus, residual alcohol and ester functionality is usually present. Cure reportedly occurs through reaction of phenolic polymer hydroxyls with the residual hydroxyls of the PVA [199]. The ester residues are observed to reduce bond strength in PVF-based systems [199]. This does not necessarily extend to PVF-P adhesives. PVF is stable in strong alkali, so participation of the acetals in curing is probably unimportant in most situations involving resoles. PVF is physically compatible with many phenolic resins. [Pg.928]

Transesterification is catalyzed by acids or bases, or performed under neutral conditions. It is an equilibrium reaction and must be shifted in the desired direction. In many cases, low-boiling esters can be converted to higher boiling ones by the distillation of the lower boiling alcohol as fast as it is formed. Reagents used to catalyze transesterification include In/l2, Montmorillonite KlOclay, Ti(OEt)4, Cu(N03)2, which with ethyl acetate is elective for primaiy alcohols, ... [Pg.486]

Figure 1 shows the methyl ester yield as a function of the reaction time for the transesterification of cottonseed oil catalyzed by the solid bases and acids. Of the solid bases, CaO and Mg0-Al203 were more effective for this reaction. Over 90% methyl ester was obtained in less than 3 hours. The reactions catalyzed by the solid acids were slower than that by the solid bases, which need about 9 hours to reach high concentration of ME. The different plateau values of the solid bases may be caused by the deactivited of the catalysts. [Pg.155]

We succeeded in showing that recycling of the enzyme was indeed possible in our IL solvent system, though the reaction rate gradually dropped with repetition of the reaction process. Since vinyl acetate was used as acyl donor, acetaldehyde was produced hy the hpase-catalyzed transesterification. It is well known that acetaldehyde acts as an inhibitor of enzymes because it forms a Schiff base with amino residue in the enzyme. However, due to the very volatile nature of acetaldehyde, it easily escapes from the reaction mixture and therefore has no inhibitory action on the lipase. However, this drop in reactivity was assumed to be caused by the inhibitory action of acetaldehyde oligomer which had accumulated in the [bmim][PFg] solvent system. In fact, it was confirmed that the reaction was inhibited by addition of acetaldehyde trimer. =... [Pg.7]

One of the most important characteristics of IL is its wide temperature range for the liquid phase with no vapor pressure, so next we tested the lipase-catalyzed reaction under reduced pressure. It is known that usual methyl esters are not suitable for lipase-catalyzed transesterification as acyl donors because reverse reaction with produced methanol takes place. However, we can avoid such difficulty when the reaction is carried out under reduced pressure even if methyl esters are used as the acyl donor, because the produced methanol is removed immediately from the reaction mixture and thus the reaction equilibrium goes through to produce the desired product. To realize this idea, proper choice of the acyl donor ester was very important. The desired reaction was accomplished using methyl phenylth-ioacetate as acyl donor. Various methyl esters can also be used as acyl donor for these reactions methyl nonanoate was also recommended and efficient optical resolution was accomplished. Using our system, we demonstrated the completely recyclable use of lipase. The transesterification took place smoothly under reduced pressure at 10 Torr at 40°C when 0.5 equivalent of methyl phenylthioacetate was used as acyl donor, and we were able to obtain this compound in optically pure form. Five repetitions of this process showed no drop in the reaction rate (Fig. 4). Recently Kato reported nice additional examples of lipase-catalyzed reaction based on the same idea that CAL-B-catalyzed esterification or amidation of carboxylic acid was accomplished under reduced pressure conditions. ... [Pg.7]

Chemoenzymatic synthesis of alkyds (oil-based polyester resins) was demonstrated. PPL-catalyzed transesterification of triglycerides with an excess of 1,4-cyclohexanedimethanol mainly produced 2-monoglycerides, followed by thermal polymerization with phthalic anhydride to give the alkyd resins with molecular weight of several thousands. The reaction of the enzymatically obtained alcoholysis product with toluene diisocyanate produced the alkyd-urethane. [Pg.226]

This work has been extended to transesterification with secondary alcohols [23], and of phosphonate esters [24], Movassaghi and co-workers have demonstrated that NHCs effectively catalyse the amidation of esters with amino alcohols, although an alternative mechanism involving the NHC acting as a Brpnsted base, resulting in nucleophilic activation of the alcohol for an initial transesterification event, followed by rapid O- to iV-acyl transfer, has been proposed [25, 26],... [Pg.271]

Esterification of tertiary alcohols poses several problems and expensive catalysts, like dimethylamino pyridine, are recommended. While esterification/transesterification/hydrolysis involving primary and secondary alcohols has been reported both with chemocatalysts and biocatalysts, terf-alcohol based esters have not found success. Recent work of Yeo et al. (1998) reports successful results for /er/-butyl octonoate using a new strain of lipase. This is a significant finding as the production of esters based on fert-alcohols (and reciprocally with hindered acids) may well be possible with biocatalysts, avoiding expensive catalysts and allowing easier separation. [Pg.159]


See other pages where Base transesterification is mentioned: [Pg.180]    [Pg.477]    [Pg.2096]    [Pg.331]    [Pg.441]    [Pg.180]    [Pg.477]    [Pg.2096]    [Pg.331]    [Pg.441]    [Pg.79]    [Pg.47]    [Pg.359]    [Pg.487]    [Pg.314]    [Pg.33]    [Pg.74]    [Pg.8]    [Pg.106]    [Pg.162]    [Pg.90]    [Pg.314]    [Pg.544]    [Pg.335]    [Pg.71]    [Pg.153]    [Pg.85]    [Pg.93]    [Pg.5]    [Pg.279]    [Pg.146]    [Pg.387]    [Pg.239]    [Pg.203]    [Pg.46]    [Pg.870]   
See also in sourсe #XX -- [ Pg.305 ]




SEARCH



Active esters base catalyzed transesterification

Base catalysis transesterification

Base-catalyzed Transesterifications

Base-catalyzed transesterification

Transesterification base-induced

Transesterification with ester-bases

Transesterifications

© 2024 chempedia.info