Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Noise barriers

Tra.nsitorAmplifiers. Most gaUium-based field-effect transitor amplifiers (FETs) are manufactured using ion implantation (qv) (52), except for high microwave frequencies and low noise requirements where epitaxy is used. The majority of discrete high electron mobiHty transistor (HEMT) low noise amplifiers are currently produced on MBE substrates. Discrete high barrier transistor (HBT) power amplifiers use MOCVD and MBE technologies. [Pg.164]

Noise reduction (AIR) is the difference in the average sound pressure level between the source room and the receiving room. When the receiving room is relatively reverberant and the measurements are made in the reverberant fields of the two rooms the relationship between TL and AIR is as follows, where S is the surface area of the sound barrier between the two rooms and is the amount of sound absorption in the receiving room (7). [Pg.315]

There are two approaches to fluid-generated noise control—source or path treatment. Path treatment means absorbing or blocking the transmission of noise after it has been created. The pipe itself is a barrier. The sound pressure level inside a standard schedule pipe is roughly 40-60 dB higher than on the outside. Thicker walled pipe reduces levels some at more, and adding acoustical insulation on the outside of the pipe reduces ambient levels up to 10 dB per inch of thickness. Since noise propagates relatively unimpeded inside the... [Pg.789]

Offset blocks, noise barriers, and right-of-way fencing. [Pg.583]

There will be new developmenfs in fhe area of amplifier design during fhe nexf few years that may break the 1 electron noise barrier. Photon-noise lim-... [Pg.151]

It has been recognized that the behavior of atomic friction, such as stick-slip, creep, and velocity dependence, can be understood in terms of the energy structure of multistable states and noise activated motion. Noises like thermal activities may cause the atom to jump even before AUq becomes zero, but the time when the atom is activated depends on sliding velocity in such a way that for a given energy barrier, AI/q the probability of activation increases with decreasing velocity. It has been demonstrated [14] that the mechanism of noise activation leads to "the velocity... [Pg.175]

The constant matrices i- act as projection operators onto the different eigenspaces. They are given in Ref. 38. The solution Eq. (30) is entirely analogous to Eq. (20) in the white noise case. To obtain a trajectory that remains in the vicinity of the barrier for all times, we again have to set caj = 0 and identify Eq. (31) as the TS trajectory. It satisfies the condition of the general definition in that it provides, at fixed time, a random ensemble of trajectories that is stationary in time, and at fixed noise sequence a a trajectory that spends most of its time close to the barrier. [Pg.209]

Figure 5. Reaction probabilities for a given instance of the noise as a function of the total integration time Tint for different values of the anharmonic coupling constant k. The solid lines represent the forward and backward reaction probabilities calculated using the moving dividing surface and the dashed lines correspond to the results obtained from the standard fixed dividing surface. In the top panel the dotted lines display the analytic estimates provided by Eq. (52). The results were obtained from 15,000 barrier ensemble trajectories subject to the same noise sequence evolved on the reactive potential (48) with barrier frequency to, = 0.75, transverse frequency co-y = 1.5, a damping constant y = 0.2, and temperature k%T = 1. (From Ref. 39.)... Figure 5. Reaction probabilities for a given instance of the noise as a function of the total integration time Tint for different values of the anharmonic coupling constant k. The solid lines represent the forward and backward reaction probabilities calculated using the moving dividing surface and the dashed lines correspond to the results obtained from the standard fixed dividing surface. In the top panel the dotted lines display the analytic estimates provided by Eq. (52). The results were obtained from 15,000 barrier ensemble trajectories subject to the same noise sequence evolved on the reactive potential (48) with barrier frequency to, = 0.75, transverse frequency co-y = 1.5, a damping constant y = 0.2, and temperature k%T = 1. (From Ref. 39.)...
J. Lehmann, P. Reimann, and P. Hanggi, Surmounting oscillating barriers path-integral approach for weak noise, Phys. Rev. E 62, 6282 (2000). [Pg.238]

That would have brought the Drain end of the Primary winding right next to the safety barrier, with the Secondary ground end (which is usually connected to the chassis) directly across the isolation boundary. With this winding arrangement, we would have a healthy dose of CM noise injected directly into the chassis/earth. [Pg.252]

The first paper that was devoted to the escape problem in the context of the kinetics of chemical reactions and that presented approximate, but complete, analytic results was the paper by Kramers [11]. Kramers considered the mechanism of the transition process as noise-assisted reaction and used the Fokker-Planck equation for the probability density of Brownian particles to obtain several approximate expressions for the desired transition rates. The main approach of the Kramers method is the assumption that the probability current over a potential barrier is small and thus constant. This condition is valid only if a potential barrier is sufficiently high in comparison with the noise intensity. For obtaining exact timescales and probability densities, it is necessary to solve the Fokker-Planck equation, which is the main difficulty of the problem of investigating diffusion transition processes. [Pg.358]

Initially, an overdamped Brownian particle is located in the potential minimum, say somewhere between x and X2- Subjected to noise perturbations, the Brownian particle will, after some time, escape over the potential barrier of the height AT. It is necessary to obtain the mean decay time of metastable state [inverse of the mean decay time (escape time) is called the escape rate]. [Pg.365]

It is known that when the transition of an overdamped Brownian particle occurs over a potential barrier high enough in comparison with noise intensity A<[>/kT 1, time evolution of many observables (e.g., the probability of... [Pg.415]

Probably, a similar procedure was previously used (see Refs. 1 and 93-95) for summation of the set of moments of the first passage time, when exponential distribution of the first passage time probability density was demonstrated for the case of a high potential barrier in comparison with noise intensity. [Pg.417]

Finally, we have considered an example of metastable state without potential barrier exponential approximation with the MFPT of the point d for kT = 1 (Fig. 13). It is seen that even for such an example the exponential approximation [with the mean decay time (6.5)] gives an adequate description of the probability evolution and that this approximation works better for larger noise intensity. [Pg.419]

The exponential approximation may lead to a significant error in the case when the noise intensity is small, the potential is tilted, and the barrier is absent (purely dynamical motion slightly modulated by noise perturbations). But, to the contrary, as it has been observed for all considered examples, the single exponential approximation is more adequate for a noise-assisted process either (a) a noise-induced escape over a barrier or (b) motion under intensive fluctuations. [Pg.424]

Safety Barriers. Figure 1 illustrates an application employing intrinsically safe electrical circuits for the demilitarization of ammunition. Three separate areas are required for this application - one area, classified as non-hazardous, to serve as the control and loading area a second area, classified as hazardous, where the actual demilitarization is accomplished and a third area, classified as non-hazardous, is required for the hydraulic pump due to the level of noise produced. [Pg.260]


See other pages where Noise barriers is mentioned: [Pg.1574]    [Pg.1586]    [Pg.2271]    [Pg.105]    [Pg.313]    [Pg.316]    [Pg.62]    [Pg.169]    [Pg.174]    [Pg.789]    [Pg.384]    [Pg.689]    [Pg.700]    [Pg.85]    [Pg.181]    [Pg.415]    [Pg.100]    [Pg.194]    [Pg.206]    [Pg.206]    [Pg.207]    [Pg.213]    [Pg.221]    [Pg.222]    [Pg.230]    [Pg.250]    [Pg.265]    [Pg.370]    [Pg.380]    [Pg.415]    [Pg.422]    [Pg.424]    [Pg.425]    [Pg.431]   
See also in sourсe #XX -- [ Pg.326 ]




SEARCH



© 2024 chempedia.info