Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Bandgap potential

A more effective carrier confinement is offered by a double heterostructure in which a thin layer of a low-gap material is sandwiched between larger-gap layers. The physical junction between two materials of different gaps is called a heterointerface. A schematic representation of the band diagram of such a stmcture is shown in figure C2.l6.l0. The electrons, injected under forward bias across the p-n junction into the lower-bandgap material, encounter a potential barrier AE at the p-p junction which inliibits their motion away from the junction. The holes see a potential barrier of... [Pg.2893]

Figure 9-22. Energy diagram ol a metal/ scmiconductor/meta Schottky barrier (0... workfunction, x,. electron affinity, /,... ionization potential, . ..bandgap, W... depletion width). Figure 9-22. Energy diagram ol a metal/ scmiconductor/meta Schottky barrier (0... workfunction, x,. electron affinity, /,... ionization potential, . ..bandgap, W... depletion width).
Figure 9-21. EL process in PLEDs. VB... valence band LB. ..conducting band V... potential M,M2... Mclal electrodes, U... bias voltage Z X2 —Interface luyers tK...bandgap P and Pr... positive and negative polarons /. Fermi energy, and 0... work I unclion. Figure 9-21. EL process in PLEDs. VB... valence band LB. ..conducting band V... potential M,M2... Mclal electrodes, U... bias voltage Z X2 —Interface luyers tK...bandgap P and Pr... positive and negative polarons /. Fermi energy, and 0... work I unclion.
Diamond, however, is not the universal semiconductor panacea it is an indirect bandgap semiconductor and does not lase. In addition, present semiconductor materials, such as silicon and gallium arsenide, are solidly entrenched with a well-established technology, and competing with them will not be an easy task. CVD diamond will also compete with silicon carbide, which has also an excellent potential as a high-performance semiconductor material and is considerably easier and cheaper to produce. [Pg.362]

Since the reorientationnergy X varies in the range of 0.5-2 eV the half width can be in the order of the bandgap of the semiconductor. Assuming that in the dark the electron transfer occurs entirely via the conduction band (majority carrier device) the current-potential dependence can be derived as follows ... [Pg.86]

Phthalocyanines have attracted particular attention as potential surface modifiers due to their stability and tendency to form ordered structures directed by dispersion forces. They are inherently host-guest structures with a readily interchangeable coordinating metal ion, which in the solid state results in a tunable bandgap. At a surface, in addition to possibly interesting electronic... [Pg.205]

Related Polymer Systems and Synthetic Methods. Figure 12A shows a hypothetical synthesis of poly (p-phenylene methide) (PPM) from polybenzyl by redox-induced elimination. In principle, it should be possible to accomplish this experimentally under similar chemical and electrochemical redox conditions as those used here for the related polythiophenes. The electronic properties of PPM have recently been theoretically calculated by Boudreaux et al (16), including bandgap (1.17 eV) bandwidth (0.44 eV) ionization potential (4.2 eV) electron affinity (3.03 eV) oxidation potential (-0.20 vs SCE) reduction potential (-1.37 eV vs SCE). PPM has recently been synthesized and doped to a semiconductor (24). [Pg.453]

The charge carriers may reduce or oxidize the semiconductor itself leading to decomposition. This poses a serious problem for practical photoelectrochemical devices. Absolute thermodynamic stability can be achieved if the redox potential of oxidative decomposition reaction lies below the valence band and the redox potential of the reductive decomposition reaction lies above the conduction band. In most cases, usually one or both redox potentials lie within the bandgap. Then the stability depends on the competition between thermodynamically possible reactions. When the redox potentials of electrode decomposition reactions are thermodynamically more favored than electrolyte redox reactions, the result is electrode instability, for example, ZnO, Cu20, and CdS in an aqueous electrolyte. [Pg.236]

Direct splitting of water can be accomplished by illuminating two interconnected photoelectrodes, a photoanode, and a photocathode as shown in Figure 7.6. Here, Eg(n) and Eg(p) are, respectively, the bandgaps of the n- and p-type semiconductors and AEp(n) and AEF(p) are, respectively, the differences between the Fermi energies and the conduction band-minimum of the n-type semiconductor bulk and valence band-maximum of the p-type semiconductor bulk. lifb(p) and Utb(n) are, respectively, the flat-band potentials of the p- and n-type semiconductors with the electrolyte. In this case, the sum of the potentials of the electron-hole pairs generated in the two photoelectrodes can be approximated by the following expression ... [Pg.240]


See other pages where Bandgap potential is mentioned: [Pg.165]    [Pg.536]    [Pg.589]    [Pg.165]    [Pg.536]    [Pg.589]    [Pg.312]    [Pg.599]    [Pg.361]    [Pg.34]    [Pg.150]    [Pg.195]    [Pg.737]    [Pg.569]    [Pg.91]    [Pg.91]    [Pg.93]    [Pg.267]    [Pg.455]    [Pg.9]    [Pg.1008]    [Pg.1044]    [Pg.229]    [Pg.231]    [Pg.232]    [Pg.234]    [Pg.239]    [Pg.241]    [Pg.243]    [Pg.246]    [Pg.251]    [Pg.252]    [Pg.255]    [Pg.272]    [Pg.273]    [Pg.302]    [Pg.789]    [Pg.297]    [Pg.52]    [Pg.453]    [Pg.443]    [Pg.444]    [Pg.449]    [Pg.433]    [Pg.550]   
See also in sourсe #XX -- [ Pg.128 , Pg.155 , Pg.160 , Pg.164 , Pg.165 , Pg.179 ]




SEARCH



Bandgap

© 2024 chempedia.info